Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T04:43:22.022Z Has data issue: false hasContentIssue false

Experimental identification of dynamic parameters for a class of geared robots*

Published online by Cambridge University Press:  09 March 2009

Piotr Dutkiewicz
Affiliation:
Poznań Technical University, Department of Control, Robotics and Computer Science, ul. Piotrowo 3a, 60-965 Poznań (Poland), email: kk@ar.kari.poz.edu.pl, pdut@ar.kari.poz.edu.pl.

Summary

The main objective of this paper is a presentation of an experimental identification of a non-direct drive robot and load dynamic parameters, which appear in the integral model. The last one is based on the energy theorem formulation. In the robotics literature there are not many experimental results known to the authors, concerning the identification of the dynamic parameters of different models. In order to satisfy this, the experimental system has been built around an industrial ASEA IRp-6 robot. In this paper we propose to precompute the friction characteristics which are separated in the integral model. Various aspects of the exciting trajectories are considered. It is shown how to identify the friction coefficients using a short integral model. The experimental results are presented, including comparison of the results for both integral and differential identification. The identified models are verified by computing the predicted torques and trajectories

Type
Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.An, C.H., Atkeson, C.G. and Hollerbach, J.M., Model-Based Control of a Robot Manipulator (The MIT Press, Cambridge, 1988).Google Scholar
2.Gautier, M. and Khalil, W., “On the Identification of the Inertial Parameters of Robots”, Proc. of the 27th CDC,Austin, USA,(1988) pp. 22642269.Google Scholar
3. Khosla, P.K., “Real-Time Control and Identification of Direct-Drive Manipulators”, Ph.D. Thesis (Carnegie-Mellon University, 1986).Google Scholar
4.Kozlowski, K. and Prüfer, M., “Parameter Identification of an Experimental 2-Link Direct Drive Arm”, Proc. of the 1ASTED International Conference, Control and Robotics,Vancouver, Canada(1992) pp. 313316.Google Scholar
5.Olsen, H.B. and Bekey, G.A., “Identification of Robot Dynamics”, Proc. of the 1986 IEEE International Conference on Robotics and Automation,San Francisco, USA(1986) pp. 10041010.Google Scholar
6.Kozlowski, K., “Identification of Model Parameters of Robotic Manipulators”, Systems Science 18, No. 1–2, 165187 (1992).Google Scholar
7.Armstrong-Hélouvry, B., Control of Machines with Friction, (Kluwer Academic Publishers, Holland, 1991).CrossRefGoogle Scholar
8.Kozlowski, K. and Dutkiewicz, P., “Identification of Friction and Robot Dynamics for a Class of Geared Robots”, Proc. of the Fourth International Symposium on Measurement and Control in Robotics,Smolenice, Slovakia(1995) pp. 301306.Google Scholar
9.Dutkiewicz, P., Kozlowski, K. and Wróblewski, W., “Experimental Identification of Robot and Load Dynamics Parameters”, Proc. of the 2-nd IEEE Conference on Control Applications,Vancouver, Canada(1993a) pp. 767776.Google Scholar
10.Lu, Z., Shimoga, K.B. and Goldenberg, A.A., “Experimental Determination of Dynamic Parameters of Robotic Arms”, J. Robotic Systems 10, No. 8, 10091029.CrossRefGoogle Scholar
11.Priifer, M. and Wahl, F., “Analyse und Vorkompensation von Reibungseffecten bei Industrieroboten mit Getrieben”, VDI Berichte, No. 1094, 597605 (1993).Google Scholar
12.Seeger, .G. and Leonhard, W., “Estimation of Rigid Body Models for a Six-Axis Manipulator with Geared Electric drives”, Proc. of the IEEE International Conference on Robotics and Automation,Scottsdale, USA(1989) pp. 16901695.Google Scholar
13.Seeger, S., “Self-Tuning Control of a Commercial Manipulator Based on An Inverse Dynamic Model”, Proc. of the Symposium on Robot Control SYROCO'91,Vienna, Austria(1991) pp. 453458.Google Scholar
14.Ha, I., Ko, M. and Kwon, S.K., “An Efficient Estimation Algorithm for the Model Parameters of Robotic Manipulators”, IEEE Transactions on Robotics and Automation 5, 386394 (1989).CrossRefGoogle Scholar
15.Specht, R. and Isermann, P., “On-Line Identification of Inertia, Friction and Gravitational Forces Applied to an Industrial Robot”, IF AC Proceedings Series 1989, SYROCO'88,Karlsruhe, Germany(1988) pp. 219224.Google Scholar
16.Priifer, M. and Wahl, F., “Friction Analysis and Modelling for Geared Robots”, Preprints of the Fourth Symposium on Robotx Control, Capri, Italy (1994) pp. 551556.Google Scholar
17.Khalil, W. and Kleinfinger, J.F., “Minimum Operations and Minimum Parameters of the Dynamic Models of Tree Structure Robots”, IEEE J. Robotics and Automation RA-3, No. 6, 517526 (1987).CrossRefGoogle Scholar
18.Sheu, Shih-Ying and Walker, M.W.Identifying the Independent Inertial Parameter Space of Robot Manipulators”, J. Robotics Research 10, No. 6, 618683 (1991).CrossRefGoogle Scholar
19.Gautier, M. and Khalil, W. “A Direct Determination of Minimum Inertial Parameters of Robots”, Proc. of the IEEE International Conference on Robotics and Automation,Philadelphia, USA(1988) pp. 16821686.Google Scholar
20.Gautier, M. and Khalil, W., “Identification of the Minimum Inertial Parameters of Robots”, Proc. of the IEEE International Conference on Robotics and Automation,Scottsdale, USA(1989) pp. 15291534.Google Scholar
21.Mayeda, H., Yoshida, K. and Osuka, K., “Base Parameters of Manipulator Dynamic Models”, IEEE Transactions on Robotics and Automation 6, No. 3, 313321 (1990).CrossRefGoogle Scholar
22.Mayeda, H., Osuka, K. and Kangawa, A., “A New Identification Method for Serial Manipulator Arms”, Preprints IF AC 9th World Congress 4, Budapest, Hungary (1984) pp. 7479.Google Scholar
23.Gautier, M. and Presse, C., “Sequential Identification of Base Parameters of Robots”, Proc. of the Fifth International Conference on Advanced Robotics,Pisa, Italy,(1991) 11051110.CrossRefGoogle Scholar
24.Gautier, M., Khalil, W. and Restrepo, P.P., “Identification of the Dynamic Parameters of a Closed Loop Robot”, Proc. of the 1995 IEEE International Conference on Robotics and Automation,Nagoya, Japan(1995) pp. 30453050.Google Scholar
25.Caccavale, F. and Chiacchio, P., “Energy-Based Identification of Dynamic Parameters for a Conventional Industrial Manipulator”, Preprints of the Fourth IF AC Symposium on Robot Control, Capri, Italy (1994) pp. 619624.Google Scholar
26.Prüfer, M., Schmidt, C. and Wahl, F., “Identification of Robot Dynamics with Differential and Integral Models: A Comparison”, Proc. of the IEEE International Conference on Robotics and Automation,San Diego, USA(1994) pp. 340345.Google Scholar
27.Presse, C. and Gautier, M., “Identification of Robot Parameters via Sequential Energy Method”, Proc. of the Third IF AC Symposium on Robot Control,Vienna, Austria(1991) pp. 117122.Google Scholar
28.de Wit, C. Canudas, Aström, K.J. and Braun, K., “Adaptive Friction Compensation in DC-Motor Drives”, IEEE Journal of Robotics and Automation RA–3, 681685 (1987).Google Scholar
29.de Wit, C. Canudas, Noel, P., Aubin, A. and Brogliato, B., “Adaptive Friction Compensation in Robot Manipulators: Low Velocities”, J. Robotics Research 10, 189199 (1991).CrossRefGoogle Scholar
301.Schaefers, J., Xu, S.J. and Darouach, M., “On Parameter Estimation of Industrial Robots Without Using Acceleration Signal”, Proc. of 10th IF AC Symposium on System Identification,Copenhagen, Denmark,(1994) pp. 589593.Google Scholar
31.Szynkiewicz, W., Gosiewski, A. and Janecki, D., “Experimental Verification of Dynamics Model of the IRp-6 Robot Manipulator”, Proc. of the Second National Conference on Robotics and Automation (in Polish),Wroclaw, Poland(1990) pp. 255260.Google Scholar
32.Van Der Linden, G.W. and Van der Weiden, A.J.J., “Practical Rigid Body Parameter Estimation”, Preprints of the Fourth IFAC Symposium on Robot Control, Capri, Italy (1994) pp. 631636.Google Scholar
33.Gautier, M., Khalil, W., Presse, C. and Rastrepo, P.P., “Experimental Identification of Dynamic Parameters of Robot”, Preprints of the Fourth IFAC Symposium on Robot Control, Capri, Italy (1994) pp. 625630.Google Scholar
34.Zimmermann, U., Wunderlich, H., Rake, H. and Bruns, M.. “Identification of Time Varying Parameters of the Robot Dynamics”, IFAC Proc. Series 1989, SYROCO'88, Karlsruhe, Germany (1989) pp. 225229.Google Scholar
35.Lin, S.K., “Identification of a Class of Nonlinear Deterministic Systems with Application to Manipulators”, IEEE Transactions on Automatic Control 39, No. 9, 18861893 (1994).Google Scholar
36.Lin, S.K., “An Identification Method for Estimating the Inertia Parameters of a Manipulator”, J. Robotics Svstems 9, No. 4, 505528 (1992).CrossRefGoogle Scholar
37.Caccavale, F. and Chiacchio, P., “Identification of dynamic Parameters for a Conventional Industrial Manipulator” Proc. of the 10th IF AC Symposium on System Identification,Copenhagen, Denmark(1994) pp. 583588.Google Scholar
38.Dutkiewicz, P., Kozlowski, K. and Wróblewski, W., “Experimental Identification of Load Parameters”, Proc. of the IEEE International Symposium on Industrial Electronics,Budapest, Hungary(1993b) pp. 361366.Google Scholar
39.Mareels, I.M.Y. et al. , “How Exciting Can a Signal Really Be”, Systems and Control Letters 8, 197204 (1987).CrossRefGoogle Scholar
40.Golub, G.H. and Van Loan, C.F., Matrix Computation (John Hopkins University Press, Baltimore, MD, 1989).Google Scholar
41.Armstrong, B., “On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics”, J. Robotics Research 8, 2848 (1989).CrossRefGoogle Scholar
42.Vandanjon, P.O., Gautier, M. and Desbats, P., “Identification of Robots Inertial by Means of Spectrum Analysis”, Proc. of the 1995 International Conference on Robotics and Automation,Nagoya, Japan(1995) pp. 30333038.Google Scholar
43.Presse, C. and Gautier, M., “New Criteria of Exciting Trajectories for Robot Identification”, Proc. of the IEEE International Conference on Robotics and Automation,Atlanta, USA(1993) pp. 907912.Google Scholar
44.Gautier, M. and Khalil, W., “Exciting Trajectories for the Identification of Base Inertial Parameters of Robots”, J. Robotics Research 11, 362375 (1992).CrossRefGoogle Scholar
45.Gautier, M., “Optimal Motion Planning for Robot”s Inertial Parameters Identification”, Proc. of the 31st IEEE Conference on Decision and Control,Tucson, USA(1992) pp. 70–73.Google Scholar
46.Kozlowski, K. and Dutkiewicz, P., “Optimal Trajectory Design for the Identification of Robot and Load Dynamics”, Appl. Math, and Comp. Sci. 5, No. 4, 671687 (1995).Google Scholar
47.Dutkiewicz, P., Kozlowski, K. and Wróewski, W., “Robot Programming System for Research Purposes”, Proc. of the COMPUEURO'93.Paris-Evry, France(1993c) pp. 94101.Google Scholar
48.Gautier, M., “Identification of Robot Dynamics”, Proc. of the IFAC/IFIP/IMACS International Symposium on Theory of Robots,Vienna, Austria(1986) pp. 351356.Google Scholar
49.Kallenbach, R., Kovarianzmethoden zur Parameteridentification Zeitkontinuierlicher Systeme (VDI Verlag, 1987).Google Scholar
50.Wolfram, S., Mathematica, a System for Doing Mathematics (Addison Wesley Publishing Company, 1992).Google Scholar
51.de Wit, C. Canudas and Aubin, A., “Robot Parameter Identification via sequential Hybrid Algorithm”, Proc. of the IEEE International Conference on Robotics and Automation,Sacramento, USA(1991) pp. 952957.Google Scholar
52.Pfeiffer, F. and Hölzl, J., “Parameter Identification for Industrial Robots”, Proc. of the 1995 IEEE International Conference on Robotics and Automation,Nagoya, Japan(1995) pp. 14681475.Google Scholar