Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T00:25:45.890Z Has data issue: false hasContentIssue false

Experimental tests of a sliding mode controller for trajectory tracking of a car-like mobile robot

Published online by Cambridge University Press:  19 July 2013

F. Hamerlain*
Affiliation:
Division Robotique et Productique, CDTA, Cité du 20 Août 1956, BP No. 17, Baba Hassen, Algiers, Algeria
T. Floquet
Affiliation:
LAGIS UMR CNRS 8146, Ecole Centrale de Lille, BP No. 48, Cité Scientifique, 59651 Villeneuve-d'Ascq, France
W. Perruquetti
Affiliation:
INRIA-LNE, Parc Scientifique de la Haute Borne 40, Avenue Halley Bat. A, Park Plaza 59650 Villeneuve d'Ascq, France
*
*Corresponding author. E-mail: hamerlainf@yahoo.fr

Summary

This paper deals with the problem of the practical tracking control of an experimental car-like system called the Robucar. The car-like Robucar is a four-wheeled car in a single steering mode. Based on a kinematic model of the car-like Robucar, a practical tracking controller is designed using the second-order sliding mode control of the super twisting algorithm. Hence, the output tracking of the desired trajectory is achieved, and the tracking errors vanish asymptotically. Experimental tests on the car-like Robucar are presented for simple and real-time nonholonomic trajectories, and comparative results with the conventional sliding controller demonstrate the applicability and efficiency of the proposed controller.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Astolfi, A., “Discontinuous control of nonholonomic systems,” Syts. Control Lett. 27, 3747 (1996).CrossRefGoogle Scholar
2.Bartolini, G., Ferrara, A., Levant, A. and Usai, E., “On Second Order Sliding Mode Controllers,” In: Variable Structure Systems, Sliding Mode and Nonlinear Control (Lecture Notes in Control and Information Sciences 247), (Young, K. D. and Ozgüner, Ü., eds.) (Springer-Verlag, London, 1999) pp. 329350.CrossRefGoogle Scholar
3.Benalia, A., Djemai, M. and Barbot, J. P., “Control of the kinematic car using trajectory generation and the high order sliding mode control,” IEEE Int. Conf. Syst. Man Cybern. 3, 24552460 (2003).Google Scholar
4.Blazic, S., “A novel trajectory-tracking control law for wheeled mobile robots,” J. Robot. Auton. Syst. 59, 10011007 (2011).CrossRefGoogle Scholar
5.Brockett, R. W., “Asymptotic Stability and Feedback Stabilization,” In: Differential Geometric Control Theory (Brockett, R. W., Millman, R. S. and Sussmann, H. J. eds.) (Birkhauser, Boston, MA, 1983) pp. 181191.Google Scholar
6.Canudas de Wit, C., Siciliano, B. and Bastin, G., Theory of Robot Control (Springer, Berlin, Germany, 1996).CrossRefGoogle Scholar
7.De Luca, A., Oriolo, G. and Samson, C., “Feedback Control of a Nonholonomic Car-Like Robot,” In: Robot Motion Planning and Control (Laumond, J-P., ed.), LNCIS, Vol. 229 (Springer-Verlag, London, UK, 1998) pp. 171253.CrossRefGoogle Scholar
8.Dievelbiss, A. W. and Wen, J. T., “Trajectory tracking of a car-trailer system,” IEEE Trans. Control Syst. Technol. 5 (3), 269278 (1997).CrossRefGoogle Scholar
9.Drakunov, S. V., Floquet, T. and Perruquetti, W., “Stabilization and tracking control for an extended Heisenberg system with a drift,” Syst. Control Lett. 54 (5), 435445 (2005).CrossRefGoogle Scholar
10.Fliess, M., Lévine, J., Martin, P. and Rouchon, P., “A Lie-Backlund approach to equivalence and flatness of nonlinear systems,” IEEE Trans. Autom. Control 44, 922937 (1999).CrossRefGoogle Scholar
11.Fridman, L. and Levant, A., “Higher Order Sliding Modes,” In: Sliding Mode Control in Engineering (Perruquetti, W. and Barbot, J. P., eds.) (Marcel Dekker, 2002) 53101.Google Scholar
12.Gracia, L. and Tornero, J., “Kinematic control of wheeled mobile robot,” Latin Am. Appl. Res. 38, 716 (2008).Google Scholar
13.Hamerlain, F., Achour, K., Floquet, T. and Perruquetti, W., “Trajectory Tracking of a Car-Like Mobile Robot Using Second Order Sliding Mode Control,” Proceedings of the IEEE European Control Conference (ECC'07), Kos, Greece (2007).Google Scholar
14.Hamerlain, F., Achour, K., Floquet, T. and Perruquetti, W., “Higher Order Sliding Mode Control of Wheeled Mobile Robots in the Presence of Sliding Effects,” Proceedings of the 44th Conference on Decision and Control and European Control Conference, Seville, Spain (2005).Google Scholar
15.Jiang, Z-P., “Robust exponential regulation of nonholonomic systems with uncertainties,” Automatica 36, 189209 (2000).CrossRefGoogle Scholar
16.Hu, H. and Woo, P. Y., “Fuzzy supervisory sliding mode and neural network control for robotic manipulators,” IEEE Trans. Ind. Electron. 53 (3), 929940 (2006).CrossRefGoogle Scholar
17.Kim, I. S., Kim, M. B. and Youn, M. J., “New maximum power point tracker using sliding mode observer for estimation of solar array current in the grid connected photovoltaic system,” IEEE Trans. Ind. Electron. 53 (4), 10271035 (2006).CrossRefGoogle Scholar
18.Kolmanovsky, I. and McClamroch, N. H., “Development in nonholonomic control problems,” IEEE Control Syst. Mag. 15 (6), 2036 (1996).Google Scholar
19.Laumond, J. P., “La Robotique Mobile,” Traité IC2. Information-Commande-Communication (Hermes Science, Paris, France, 2001).Google Scholar
20.Levant, A., “Sliding order and sliding accuracy in sliding mode control,” Int. J. Control 58 (6), 12471263 (1993).CrossRefGoogle Scholar
21.Li, C. K., Chao, H., Hu, Y. M. and Rad, A. B., “Output Tracking Control of Mobile Robots Based on Adaptive Backstepping and Sliding Modes,” Proceedings of the IEE Control Conference, Hong Kong (2002).Google Scholar
22.Morin, P. and Samson, C., “Control of nonholonomic mobile robots based on the transverse function approach,” IEEE Trans. Robot. 25 (5), 10581073 (2009).CrossRefGoogle Scholar
23.Lizarraga, D., “Obstructions to the existence of universal stabilizers for smooth control systems,” Math. Control Signals Syst. (MCSS'04) 6, 255277 (2004).CrossRefGoogle Scholar
24.Oriolo, G., De Luca, A. and Vendittelli, M., “WMR Control via dynamic feedback linearisation: Design, implementation and experimental validation,” IEEE Trans. Control Syst. Technol. 10 (6), 835852 (2002).CrossRefGoogle Scholar
25.Samson, C., “Control of chained systems: Application to path following and time-varying point-stabilization of mobile robots,” IEEE Trans. Autom. Control 40 (1), 6477 (1995).CrossRefGoogle Scholar
26.Scheuer, A. and Laugier, Ch., “Planning Sub-optimal and Continuous-Curvature Paths for Car-Like Robots,” In: Proceedings – IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 1 (IEEE, New York, NY, 1998), pp. 2531.Google Scholar
27.Utkin, V. I., Sliding Modes in Control and Optimization (Springer-Verlag, Berlin, Germany, 1992).CrossRefGoogle Scholar
28.Yeh, Y., Li, T. and Chen, C., “Adaptive fuzzy sliding mode control of dynamic model based car-like mobile robot,” Int. J. Fuzzy Syst. 11 (4), 272286 (2009).Google Scholar