Published online by Cambridge University Press: 09 March 2009
This paper proposes a fast tracking error control method for a mobile robot with two differentially driven wheels. The tracking error between reference state and current state is transformed to the required displacement changes of each drive wheel by a wheel Jacobian. The major objective of this paper is to propose a control method for eliminating the tracking error quickly by controlling two independent driving wheels at the same time. To avoid long computational requirements of a Cartesian-based control, a kinematic model of the vehicle and co-ordinate system are introduced. Several simulation results are presented using this method. The fast tracking error control method proposed is mainly hardware-independent and Hence can be applied to various kinds of mobile robots which have two differentially driven wheels. The method was implemented on an experimental vehicle, WCVS, The experimentation shows a performance suitable for practical applications.