Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T01:51:33.756Z Has data issue: false hasContentIssue false

Formation control of networked mobile robots with guaranteed obstacle and collision avoidance

Published online by Cambridge University Press:  08 March 2016

Mohammad Hosseinzadeh Yamchi
Affiliation:
Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran. E-mail: m_hosseinzadeh@sut.ac.ir
Reza Mahboobi Esfanjani*
Affiliation:
Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran. E-mail: m_hosseinzadeh@sut.ac.ir
*
*Corresponding author. E-mail: m_hosseinzadeh@sut.ac.ir

Summary

This note presents a novel method to design a controller for the formation of networked mobile robots, where the communication between the members of the group is affected by variable time-delay. The control objective is twofold: to maintain the formation during the motion along a desired path and guarantee no collisions with obstacles or adjacent robots. Initially, an innovative dynamical model is formulated for the system; afterwards, the notion of model predictive control is employed to ensure collision avoidance with guaranteed stability. Simulation results are provided to demonstrate the applicability and effectiveness of the suggested method.

Type
Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Consolini, L., Morbidi, F., Prattichizzo, D. and Tosques, M., “Leader–follower formation control of nonholonomic mobile robots with input constraints,” Automatica 44, 13431349 (2008).CrossRefGoogle Scholar
2. Shao, J., Xie, G. and Wang, L., “Leader-following formation control of multiple mobile vehicles,” IET Control Theory Appl. 1 (2), 545552 (2007).CrossRefGoogle Scholar
3. Dierks, T. and Jagannathan, S., “Asymptotic adaptive neural network tracking control of nonholonomic mobile robot formations”, J. Intell. Robot. Syst. 56, 153176 (2009).CrossRefGoogle Scholar
4. Biglarbegian, M., “A novel robust leader-following control design for mobile robots,” J. Intell. Robot. Syst. 71, 391402 (2013).CrossRefGoogle Scholar
5. Gu, D. and Hu, H., “A model predictive controller for robots to follow a virtual leader,” Robotica 27, 905913 (2009)CrossRefGoogle Scholar
6. Ren, W. and Beard, R. W., “Decentralized scheme for spacecraft formation flying via the virtual structure approach,” J. Guid. Control Dyn. 27 (1), 7382 (2004).CrossRefGoogle Scholar
7. Lawton, J. R. T., Beard, R. W. and Young, B. J., “A decentralized approach to formation maneuvers,” IEEE Trans. Robot. Autom. 19 (6), 933941 (2003).CrossRefGoogle Scholar
8. Do, K. D., “Bounded controllers for formation stabilization of mobile agents with limited sensing ranges,” IEEE Trans. Autom. Control 52 (3), 569576 (2007).CrossRefGoogle Scholar
9. Do, K. D. and Lau, M. W., “Practical formation control of multiple unicycle-type mobile robots with limited sensing ranges,” J. Intell. Robot. Syst. 64 (2), 245275 (2011).CrossRefGoogle Scholar
10. Do, K. D., “Output-feedback formation tracking control of unicycle-type mobile robots with limited sensing ranges,” Robot. Auton. Syst. 57, 3447 (2009).CrossRefGoogle Scholar
11. Do, K. D., “Formation control of underactuated ships with elliptical shape approximation and limited communication ranges,” Automatica 48, 13801388 (2012).CrossRefGoogle Scholar
12. Do, K. D., “Practical formation control of multiple underactuated ships with limited sensing ranges,” Robot. Auton. Syst. 59, 457471 (2011).CrossRefGoogle Scholar
13. Barnes, L. E., Fields, M. A. and Valavanis, K. P., “Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions,” IEEE Trans. Syst. Man Cybern. 39 (6), 14341445 (2009).CrossRefGoogle ScholarPubMed
14. García-Delgado, L., Dzul, A., Santibáñez, V. and Llama, M., “Quad-rotors formation based on potential functions with obstacle avoidance,” IET Control Theory Appl. 6 (12), 17871802 (2012).CrossRefGoogle Scholar
15. Xue, D., Yao, J., Chen, G. and Yu, Y.-L., “Formation control of networked multi-agent systems,” IET Control Theory Appl. 4 (10), 21682176 (2010).CrossRefGoogle Scholar
16. Shin, J. and Kim, H. J., “Nonlinear model predictive formation flight,” EEE Trans. Syst. Man Cybern. 39 (5), 11161125 (2009).CrossRefGoogle Scholar
17. Fukushima, H., Kon, K., and Matsuno, F., “Model predictive formation control using branch-and-bound compatible with collision avoidance problems,” IEEE Trans. Robot. 29 (5), 13081317 (2013).CrossRefGoogle Scholar
18. Nascimen, T. P., Conceicao, A. G. and Moreira, A. P., “Multi-robot nonlinear model predictive formation control: The obstacle avoidance problem,” Robotica, DOI: 10.1017/S0263574714001696, (2014).Google Scholar
19. Defoort, M., Floquet, T., Kökösy, A. and Perruquetti, W., “Sliding-mode formation control for cooperative autonomous mobile robots”, IEEE Trans. Ind. Electron. 55 (11), 39443953 (2008).CrossRefGoogle Scholar
20. Gupta, R. A. and Chow, M.-Y., “Networked control system, overview and research trends”, IEEE Trans. Ind. Electron. 57 (7), 25272535 (2010).CrossRefGoogle Scholar
21. Wang, L. and Xiao, F., “Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays,” IEEE Trans. Auto. Control 53 (8), 18041816 (2008).Google Scholar
22. Münz, U., Papachristodoulou, A. and Allgöwer, F., “Delay robustness in consensus problems,” Automatica 46, 12521265 (2010).CrossRefGoogle Scholar
23. Abdessameud, A. and Tayebi, A., “Formation control of VTOL unmanned aerial vehicles with communication delays,” Automatica 47, 23832394 (2011).CrossRefGoogle Scholar
24. Zhou, J., Hu, Q., Zhang, Y. and Ma, G., “Decentralized adaptive output feedback synchronisation tracking control of spacecraft formation flying with time-varying delay,” IET Control Theory Appl. 6 (13), 20092020 (2012).CrossRefGoogle Scholar
25. Yang, H., Wang, C. and Zhang, F., “A decoupled controller design approach for formation control of autonomous underwater vehicles with time delays,” IET Control Theory Appl. 7 (15), 19501958 (2013).CrossRefGoogle Scholar
26. Xue, D., Yao, J., Wang, J., Guo, Y. and Han, X., “Formation control of multi-agent systems with stochastic switching topology and time-varying communication delays,” IET Control Theory Appl. 7 (13), 16891698 (2013).CrossRefGoogle Scholar
27. Millán, P., Orihuela, L., Jurado, I. and Rubio, F. R., “Formation control of autonomous underwater vehicles subject to communication delays,” IEEE Trans. Control Syst. Technol. 22 (2), 770777 (2014).CrossRefGoogle Scholar
28. Rezaee, H., Abdollahi, F. and Talebi, H. A., “H based motion synchronization in formation flight with delayed communications,” IEEE Trans. Ind. Electron. 61 (11), 6182–6175 (2014).CrossRefGoogle Scholar
29. Sorensen, N. and Ren, W., “Distributed coordination architecture for multi-robot formation control,” Robot. Auton. Syst. 56, 324333 (2008).Google Scholar
30. Scholte, E. and Campbell, M. E., “Robust nonlinear model predictive control with partial state information,” IEEE Trans. Control Syst. Technol. 16, 636651 (2008).CrossRefGoogle Scholar
31. Varutti, P., Kern, B., Faulwasser, T., and Findeisen, R., “Event-based model predictive control for networked control systems,” Proceeding of the 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China (Dec. 15–18, 2008) pp. 567572.Google Scholar
32. Coleman, T., Branch, M. A. and Grace, A., Optimization Toolbox for Use with MATLAB: User's Guide, Version 2. Math Works, Incorporated, (1999).Google Scholar
33. Fridman, E., Introduction to Time-Delay Systems: analysis and Control (Springer, Switzerland, 2014).CrossRefGoogle Scholar
34. Van Loan, C., “The sensitivity of the matrix exponential”, SIAM J. Numer. Anal. 14 (6), 971981 (1977).CrossRefGoogle Scholar