General method for kinematic synthesis of manipulators with task specifications
Published online by Cambridge University Press: 01 November 1997
Abstract
This paper deals with the kinematic synthesis of manipulators. A new method based on distributed solving is used to determine the dimensional parameters of a general manipulator which is able to reach a set of given tasks specified by orientation and position. First, a general Distributed Solving Method (DSM) is presented in three steps: the problem statement, the objective functions formulations and the minimum parameters values determination. Then, this method is applied to solve the synthesis of the Denavit and Hartenberg set of parameters of a manipulator with a given kinematic structure. In this case, the kind and the number of joints are specified and a set of constraints are included such as joint limits, range of dimensional parameters and geometrical obstacles avoidance. We show that if the Denavit and Hartenberg parameters (DH) are known, the synthesis problem is reduced to an inverse kinematic problem. We show also how the problem of robot base placement can be solved by the same method. A general algorithm is given for solving the synthesis problem for all kind of manipulators. The main contribution of this paper is a general method for kinematic synthesis of all kind of manipulators and some examples are presented for a six degrees of freedom manipulator in cluttered environment.
- Type
- Research Article
- Information
- Copyright
- © 1997 Cambridge University Press
- 7
- Cited by