Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T17:16:33.199Z Has data issue: false hasContentIssue false

A general stiffness model for programmable matter and modular robotic structures

Published online by Cambridge University Press:  14 January 2011

Paul J. White*
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, USA
Shai Revzen
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, USA
Chris E. Thorne
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, USA
Mark Yim
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, USA
*
*Corresponding author. E-mail: whitepj@seas.upenn.edu

Summary

The fields of modular reconfigurable robotics and programmable matter study how to compose functionally useful systems from configurations of modules. In addition to the external shape of a module configuration, the internal arrangement of modules and bonds between them can greatly impact functionally relevant mechanical properties such as load bearing ability. A fast method to evaluate the mechanical property aids the search for an arrangement of modules achieving a desired mechanical property as the space of possible configurations grows combinatorially. We present a fast approximate method where the bonds between modules are represented with stiffness matrices that are general enough to represent a wide variety of systems and follows the natural modular decomposition of the system. The method includes nonlinear modeling such as anisotropic bonds and properties that vary as components flex. We show that the arrangement of two types of bonds within a programmable matter systems enables programming the apparent elasticity of the structure. We also present a method to experimentally determine the stiffness matrix for chain style reconfigurable robots. The efficacy of applying the method is demonstrated on the CKBot modular robot and two programmable matter systems: the Rubik's snake folding chain toy and a right angle tetrahedron chain called RATChET7mm. By allowing the design space to be rapidly explored we open the door to optimizing modular structures for desired mechanical properties such as enhanced load bearing and robustness.

Type
Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

2.Barber, J. R., Elasticity (Kluwer Academic Pub, Dordrecht, 2002).Google Scholar
3.Beer, F., Russell, J. and DeWolf, J., Mechanics of Materials (McGraw-Hill, New York, NY, 2002).Google Scholar
4.Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N. and Nguyen, T., “Programmable Parts: A Demonstration of the Grammatical Approach to Self-Organization,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton (2005) pp. 36843691.Google Scholar
5.Brandt, D. and Christensen, D. J., “A New Meta-Module for Controlling Large Sheets of ATRON Modules,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (2007) pp. 2375–2380.Google Scholar
6.Brown, H. B., Weghe, J. M. V., Bererton, C. A. and Khosla, P. K., “Millibot trains for enhanced mobility,” IEEE/ASME Trans. Mechatronics 7 (4), 452461 (2002).CrossRefGoogle Scholar
7.Caccavale, F., Natale, C., Siciliano, B. and Villani, L., “Six-dof impedance control based on angle/axis representations,” IEEE Trans. Robot. Autom. 15 (2), 289300 (1999).CrossRefGoogle Scholar
8.Caccavale, F., Siciliano, B. and Villani, L., “Quaternion-Based Impedance with Nondiagonal Stiffness for Robotmanipulators,” American Control Conference, 1998. Proceedings of the 1998, Philadelphia, vol. 1 (1998).CrossRefGoogle Scholar
9.Chirikjian, G. S., “Kinematics of a Metamorphic Robotic System,” Proceedings of IEEE/RSJ International Conference on Robotics and Automation, San Diego, vol. 1 (May 1994) pp. 449455.Google Scholar
10.Daróczy-Kiss, E., “On the minimum intrinsic 1-volume of voronoi cells in lattice unit sphere packings,” Periodica Mathematica Hungarica 39 (1), 119123 (2000).CrossRefGoogle Scholar
11.De Rosa, M., Goldstein, S., Lee, P., Campbell, J. and Pillai, P., “Scalable Shape Sculpting via Hole Motion: Motion Planning in Lattice-Constrained Modular Robots,” Proceedings of IEEE/RSJ International Conference Robotics and Automation, Orlando, FL (2006) pp. 14621468.Google Scholar
12.Fasse, E. D. and Breedveld, P. C., “Modeling of elastically coupled podies: Part I - General theory and geometric potential function method,” J. Dyn. Syst. Meas. Control 120, 496500 (1998).CrossRefGoogle Scholar
13.Fasse, E. D. and Breedveld, P. C., “Modeling of elastically coupled bodies: Part II - Exponential and generalized coordinate methods,” J. Dyn. Syst. Meas. Control 120, 501506 (1998).CrossRefGoogle Scholar
14.Fukuda, T., Nakagawa, S., Kawauchi, Y. and Buss, M., “Self Organizing Robots Based on Cell Structures - Cebot,” In Intelligent Robots, 1988., IEEE International Workshop, Tokyo (Oct.–2 Nov. 1988) pp. 145150.CrossRefGoogle Scholar
15.Gilpin, K., Knaian, A. and Rus, D., “Robot Pebbles: One Centimeter Modules for Programmable Matter Through Self-Disassembly,” Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Anchorage (2010).Google Scholar
16.Goldstein, S. C., Campbell, J. D. and Mowry, T. C., “Programmable matter,” Computer 38 (6), 99 (2005).CrossRefGoogle Scholar
17.Griffith, S., Growing Machines, PhD Thesis (Massachusetts Institute of Technology, 2004).Google Scholar
18.Griffith, S., McBride, J., Su, B., Ren, B. and Jacobson, J. M., “Folding any 3D shape,” http://alumni.media.mit.edu/~saul/PhD/pre_folding_s.pdf.Google Scholar
19.Hamlin, G. J. and Sanderson, A. C., “TETROBOT Modular Robotics: Prototype and Experiments,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, vol. 2 (Nov. 1996) pp. 390395.Google Scholar
20.Harris, J. M., Hirst, J. L. and Mossinghoff, M. J., Combinatorics and Graph Theory, New York (Springer, 2008).CrossRefGoogle Scholar
21.Hawkes, E., An, B., Benbernou, N. M., Tanaka, H., Kim, S., Demaine, E. D., Rus, D. and Wood, R. J., “Programmable matter by folding,” Proc. Natl. Acad. Sci. 107 (28), 12441 (2010).CrossRefGoogle ScholarPubMed
22.Howell, L. L., Compliant Mechanisms, New York (Wiley-Interscience, 2001).Google Scholar
23.Huang, S. and Schimmels, J. M., “The bounds and realization of spatial stiffnesses achieved with simple springs connected in parallel,” Robot. Autom. IEEE Trans. 14 (3), 466475 (Jun. 1998).Google Scholar
24.Jorgensen, M. W., Østergaard, E. H. and Lund, H. H., “Modular ATRON: Modules for a self-reconfigurable robot,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, Sendai, Japan (2004) pp. 20682073.Google Scholar
25.Karagozler, M. E., Goldstein, S. C. and Reid, J. R., “Stress-Driven Mems Assembly + Electrostatic Forces = 1 mm Diameter Robot,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis (Oct. 2009).Google Scholar
26.Knaian, A., Design of Programmable Matter, Master's Thesis (Massachusetts Institute of Technology, 2008).Google Scholar
27.Kotay, K., Rus, D., Vona, M. and McGray, C., “The Self-Reconfiguring Robotic Molecule,” Proceedings of IEEE/RSJ International Conference on Robotics and Automation, vol. 1, Leuven, Belgium (1998) pp. 424431.Google Scholar
28.Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T. and Murata, S., “Distributed self-reconfiguration of M-TRAN III modular robotic system,” Int. J. Robot. Res. 27 (3–4), 373386 (2008).CrossRefGoogle Scholar
29.Lončarić, J., “Normal forms of stiffness and compliance matrices,” Robot. Autom. IEEE J. 3 (6), 567572 (Dec. 1987).CrossRefGoogle Scholar
30.Moaveni, S., Finite Element Analysis: Theory and Application with ANSYS, Upper Saddle River, NJ (Prentice-Hall, 1999).Google Scholar
31.Möller, T., “A fast triangle-triangle intersection test,” J. Graphics Tools 2 (2), 2530 (1997).CrossRefGoogle Scholar
32.Mondada, F., Guignard, A., Bonani, M., Bär, D., Lauria, M. and Floreano, D., “Swarm-bot: From Concept to Implementation,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robot and Systems, Las Vegas, Nevada, US (Oct. 27–31, 2003), pp. 16261631.Google Scholar
33.Murata, S., Kurokawa, H. and Kokaji, S., “Self-Assembling Machine,” Proceedings of IEEE/RSJ IEEE International Conference on Robotics and Automation, San Diego (1994) pp. 441448.Google Scholar
34.Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K. and Kokaji, S., “M-tran: Self-reconfigurable modular robotic system,” IEEE/ASME Trans. Mechatronics 7 (4), 431 (2002).CrossRefGoogle Scholar
35.Murray, R. M., Li, Z. and Sastry, S. S., A Mathematical Introduction to Robotic Manipulation, Boca Raton (CRC, 1994).Google Scholar
36.Nguyen, A., Guibas, L. J. and Yim, M., “Controlled module density helps reconfiguration planning,” Algorithmic and Computational Robotics: New Directions: The Fourth Workshop on the Algorithmic Foundations, (WAFR), AK Peters, Ltd. (2001).Google Scholar
37.Park, M., Chitta, S. and Yim, M., “Isomorphic Gait Execution in Homogeneous Modular Robots,” Robitcs: Science and Systems Workshop on Self-reconfigurable Modular Robots, Philadelphia (2006).Google Scholar
38.Rus, D. and Vona, M., “Self-reconfiguration planning with compressible unit modules,” Proceedings of IEEE/RSJ IEEE International Conference on Robotics and Automation, vol. 4, Detroit (1999) pp. 25132520.Google Scholar
39.Rus, D. and Vona, M., “Crystalline robots: Self-reconfiguration with compressible unit modules,” Auton. Robots 10 (1), 107124 (2001).CrossRefGoogle Scholar
40.Sastra, J., Chitta, S. and Yim, M., “Dynamic rolling for a modular loop robot,” Int. J. Robot. Res. (2007).Google Scholar
41.Shen, W. M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M. and Venkatesh, J., “Multimode locomotion via SuperBot reconfigurable robots,” Auton. Robots 20 (2), 165177 (2006).CrossRefGoogle Scholar
42.Støy, K., “Using cellular automata and gradients to control self-reconfiguration,” Robot. Auton. Syst. 54 (2), 135 (2006).CrossRefGoogle Scholar
43.Støy, K. and Nagpal, R., “Self-Reconfiguration Using Directed Growth,” International Symposium on Distributed Autonomous Robotic Systems (Jun. 23–25, 2004).Google Scholar
44.Støy, K., Shen, W. M. and Will, P. M., “Using role-based control to produce locomotion in chain-type self-reconfigurable robots,” IEEE/ASME Trans. Mechatronics 7 (4) (2002).CrossRefGoogle Scholar
45.Suh, J. W., Homans, S. B. and Yim, M., “Telecubes: Mechanical Design of a Module for Self-Reconfigurable Robotics,” Proceedings of IEEE/RSJ IEEE International Conference on Robotics and Automation, vol. 4, Washington, DC (2002) pp. 40954101.Google Scholar
46.Ünsal, C. and Khosla, P. K., “A Multi-Layered Planner for Self-Reconfiguration of a Uniform Group of I-Cube Modules,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems vol. 1, Maui (2001) pp. 598605.Google Scholar
47.Ünsal, C., Kiliççöte, H. and Khosla, P., “I(CES)-Cubes: A Modular Self-Reconfigurable Bipartite Robotic System,” SPIE Proceedings, Conference on Mobile Robots and Autonomous Systems, vol. 3839, SPIE (Sep. 1999) pp. 258269.Google Scholar
48.Vassilvitskii, S., Yim, M. and Suh, J., “A complete, local and parallel reconfiguration algorithm for cube style modular robots,” Proceedings of IEEE/RSJ IEEE International Conference on Robotics and Automation, vol. 1, Washington, DC (2002) pp. 117125.Google Scholar
49.White, P., Zykov, V., Bongard, J. and Lipson, H., “Three Dimensional Stochastic Reconfiguration of Modular Robots,” Robotics: Science and Systems, Cambridge (2005) pp. 161168.Google Scholar
50.White, P. J., Kopanski, K. and Lipson, H., “Stochastic Self-Reconfigurable Cellular Robotics,” Proceedings of IEEE/RSJ International Conference on Robotics and Automation, vol. 3, New Orleans, LA, USA (2004) pp. 28882893.Google Scholar
51.White, P. J., Posner, M. L. and Yim, M., “Strength Analysis of Miniature Folded Right Angle Tetrahedron Chain Programmable Matter,” Proceedings of IEEE/RSJ International Conference on Robotics and Automation, Anchorage, AK (2010) pp. 27852790.Google Scholar
52.White, P. J., Thorne, C. E. and Yim, M., “Right Angle Tetrahedron Chain Externally-actuated Testbed (RATCHET): A Shape Changing System,” Proceedings of IDETC/CIE, San Diego, CA, USA (2009).Google Scholar
53.White, P. J. and Yim, M., “Reliable external actuation for full reachability in robotic modular self-reconfiguration,” Int. J. Robot. Res. (2009).CrossRefGoogle Scholar
54.Yim, M., Locomotion with a Unit-Modular Reconfigurable Robot Technical Report (Xerox PARC, 1995).Google Scholar
55.Yim, M., Duff, D. G. and Roufas, K. D., “Polybot: A Modular Reconfigurable Robot,” Proceedings of IEEE/RSJ IEEE International Conference on Robotics and Automation, vol. 1, San Francisco, CA, USA (2000) p. 514.Google Scholar
56.Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G. S., “Modular self-reconfigurable robot systems [grand challenges of robotics],” IEEE Robot. Autom. Mag. 14 (1), 43 (2007).CrossRefGoogle Scholar
57.Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M. and Taylor, C. J., “Towards Robotic Self-Reassembly After Explosion,” Proceedings of IEEE/RSJ IEEE International Conference on Intelligent Robots and Systems, 2007 (2007), pp. 2767–2772.Google Scholar
58.Yim, M., Zhang, Y., Lamping, J. and Mao, E., “Distributed control for 3d metamorphosis,” Auton. Robot 10 (1), 41 (2001).CrossRefGoogle Scholar
59.Zhang, S. and Fasse, E. D., “Spatial compliance modeling using a quaternion-based potential function method,” Multibody Syst. Dyn. 4 (1), 75101 (2000).CrossRefGoogle Scholar
60.Zhang, S. and Fasse, E. D., “A finite-element-based method to determine the spatial stiffness properties of a notch hinge,” J. Mech Des. 123, 141 (2001).CrossRefGoogle Scholar