Published online by Cambridge University Press: 19 April 2021
This paper formulates and solves a new problem of global practical inverse optimal exponential path-tracking control of mobile robots driven by Lévy processes with unknown characteristics. The control design is based on a new inverse optimal control design for nonlinear systems driven by Lévy processes and ensures global practical exponential stability almost surely and in the pth moment for the path-tracking errors. Moreover, it minimizes cost function that penalizes tracking errors and control torques without having to solve a Hamilton–Jacobi–Bellman or Hamilton–Jaccobi–Isaacs equation.