Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T06:58:32.169Z Has data issue: false hasContentIssue false

Humanoid NAO: A Kinematic Encounter

Published online by Cambridge University Press:  02 March 2021

Chinmaya Sahu*
Affiliation:
School of Mechanical Engineering (SMEC), Vellore Institute of Technology Vellore, Vellore632014, Tamil Nadu, India
Dayal R. Parhi
Affiliation:
Robotics Laboratory, Mechanical Engineering Department, National Institute of Technology Rourkela, Rourkela769008, Odisha, India E-mail: dayaldoc@yahoo.com
Priyadarshi Biplab Kumar
Affiliation:
Mechanical Engineering Department, National Institute of Technology Hamirpur, Hamirpur177005, Himachal Pradesh, India E-mail: p.biplabkumar@gmail.com
Manoj Kumar Muni
Affiliation:
Mechanical Engineering Department, Indira Gandhi Institute of Technology Sarang, Dhenkanal759146, Odisha, India E-mail: manoj1986nitr@gmail.com
Animesh Chhotray
Affiliation:
Department of Mechanical Engineering, Gandhi Institute for Education and Technology, Baniatangi, Bhubaneswar, Khordha752060, Odisha, India E-mail: chhotrayanimesh@gmail.com
Krishna Kant Pandey
Affiliation:
Department of Mechanical Engineering, G H Raisoni Institute of Engineering and Technology, Pune412207, Maharashtra, India E-mail: kknitrkl@yahoo.in
*
*Corresponding author. E-mail: mechchinu@gmail.com

Summary

In the current research, kinematic analysis of a humanoid NAO is attempted. Here, both Denavit–Hartenberg (DH) parameter approach and multibody formulation approach have been analyzed. In the DH parameter approach, the NAO robot is solved by separating it into five individual kinematic chains. In the multibody formulation approach, NAO is divided into 15 segments, and each segment is analyzed. Kinematic analysis holds a significant importance; as from the data obtained in the kinematic analysis, the robots can be designed for real-time path planning and navigation. The current analysis is a novel approach to analyze the NAO based on its kinematic constraints.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vukobratović, M. and Borovac, B., “Zero-moment point-thirty five years of its life,” Int. J. humanoid Rob. 1(01), 157173 (2004).CrossRefGoogle Scholar
Kim, D. U., Hwang, S.W., Kang, H. J. and Hong, D. S., “Kinematic analysis of a humanoid robot CHP-1 and selection of motors in consideration of cooperative motion,” J. Central South Univ. 19(11), 30943099 (2012).CrossRefGoogle Scholar
Sun, P., Li, Y., Wang, Z., Chen, K., Chen, B., Zeng, X., Zhao, J. and Yue, Y., “Inverse displacement analysis of a novel hybrid humanoid robotic arm,” Mech. Mach. Theory 147(147), 103743 (2020).CrossRefGoogle Scholar
Man, C. H., Xun, F., Li, C. R. and Zhao, Z. H., “Kinematics analysis based on screw theory of a humanoid robot,” J. China Univ. Mining Technol. 17(1), 4952 (2007).CrossRefGoogle Scholar
Korayem, M. H. and Hoshiar, A. K., “3D kinematics of cylindrical nanoparticle manipulation by an atomic force microscope based nanorobot,” Scientia Iranica 21(6), 1907–1919 (2014).Google Scholar
Li, Y., Wang, L., Chen, B., Wang, Z., Sun, P., Zheng, H., Xu, T. and Qin, S., “Optimization of dynamic load distribution of a serial-parallel hybrid humanoid arm,” Mech. Mach. Theory 149(149), 103792 (2020).CrossRefGoogle Scholar
Zodey, S. and Pradhan, S. K., “Matlab toolbox for kinematic analysis and simulation of dexterous robotic grippers,” Procedia Eng. 97, 18861895 (2014).CrossRefGoogle Scholar
Xu, Q. and Li, Y., “Kinematic analysis and optimization of a new compliant parallel micromanipulator,” Int. J. Adv. Rob. Syst. 3(4), 47 (2006).CrossRefGoogle Scholar
Kofinas, N., Orfanoudakis, E. and Lagoudakis, M. G., “Complete Analytical Inverse Kinematics for NAO,” 13th International Conference on Autonomous Robot Systems (Robotica) (2013) pp. 16.Google Scholar
Kofinas, N., Orfanoudakis, E. and Lagoudakis, M. G., “Complete analytical forward and inverse kinematics for the NAO humanoid robot,” J. Intell. Rob. Syst. 77(2), 251264 (2015).CrossRefGoogle Scholar
Gonçalves, V. M., Adorno, B. V., Crosnier, A. and Fraisse, P., “Stable-by-design kinematic control based on optimization,” IEEE Trans. Rob. 36(3), 644656 (2020).CrossRefGoogle Scholar
Said, A., Rodriguez-Leal, E., Soto, R., Gordillo, J. L. and Garrido, L., “Decoupled closed- form solution for humanoid lower limb kinematics,” Math. Probl. Eng. (2015). doi: 10.1155/2015/437979.CrossRefGoogle Scholar
Hernández-Santos, C., Rodriguez-Leal, E., Soto, R. and Gordillo, J. L., “Kinematics and dynamics of a new 16 DOF humanoid biped robot with active toe joint,” Int. J. Adv. Rob. Syst. 9(5), 190 (2012).CrossRefGoogle Scholar
Ijspeert, A. J., “Central pattern generators for locomotion control in animals and robots: A review,” Neural Networks 21(4), 642653 (2008).CrossRefGoogle ScholarPubMed
Kumar, S., Szadkowski, K. A. V., Mueller, A. and Kirchner, F., “An analytical and modular software workbench for solving kinematics and dynamics of series-parallel hybrid robots,” J. Mech. Rob. 12(2), (2020). doi: 10.1115/1.4045941.Google Scholar
Bagheri, M., Ajoudani, A., Lee, J., Caldwell, D. G. and Tsagarakis, N. G., “Kinematic Analysis and Design Considerations for Optimal Base Frame Arrangement of Humanoid Shoulders,2015 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2015) pp. 27102715.CrossRefGoogle Scholar
Torabi, M., Sharifi, M. and Vossoughi, G., “Robust adaptive sliding mode admittance control of exoskeleton rehabilitation robots,” Scientia Iranica 25(5), 26282642 (2018).Google Scholar
Zhou, C. and Tsagarakis, N., “On the comprehensive kinematics analysis of a humanoid parallel ankle mechanism,” J. Mech. Rob. 10(5), 051015 (2018).CrossRefGoogle Scholar
Wang, L., Liu, Z., Chen, C. P., Zhang, Y., Lee, S. and Chen, X., “A UKF-based predictable SVR learning controller for biped walking,” IEEE Trans. Syst. Man Cybern. Syst. 43(6), 14401450 (2013).CrossRefGoogle Scholar
La Hera, P. X. M., Shiriaev, A. S., Freidovich, L. B., Mettin, U. and Gusev, S. V., “Stable walking gaits for a three-link planar biped robot with one actuator,” IEEE Trans. Rob. 29(3), 589601 (2013).CrossRefGoogle Scholar
Yeon, J. S. and Park, J. H., “A fast turning method for biped robots with foot slip during single-support phase,” IEEE/ASME Trans. Mech. 19(6), 1847–1858 (2014).Google Scholar
Hasanpour, A., Daemy, P., Aghazamani, M., Alipour, K. and Jafari, M., “Kinematic Analysis of Darwin’s Humanoid Robot,” 2016 4th International Conference on Control, Instrumentation, and Automation (ICCIA) (IEEE, 2016) pp. 356361.CrossRefGoogle Scholar
Li, T., Yao, P., Luo, M., Tan, Z., Wang, M. and Guo, Z., “Design and kinematics analysis of a novel six-degree-of-freedom serial humanoid torso,” Int. J. Adv. Rob. Syst. 15(1), 1729881417748126 (2017).Google Scholar
Polverini, M. P., Laurenzi, A., Hoffman, E. M., Ruscelli, F. and Tsagarakis, N. G., “Multi-contact heavy object pushing with a centaur-type humanoid robot: Planning and control for a real demonstrator,” IEEE Rob. Autom. Lett. 5(2), 859866 (2020).CrossRefGoogle Scholar
Wu, X. and Xie, Z., “Forward kinematics analysis of a novel 3-DOF parallel manipulator,” Scientia Iranica Trans. B Mech. Eng. 26(1), 346357 (2019).Google Scholar
Iida, F., Minekawa, Y., Rummel, J. and Seyfarth, A., “Toward a human-like biped robot with compliant legs,” Robot. Auton. Syst. 57(2), 139144 (2009).CrossRefGoogle Scholar
Rakoviæ, M., Borovac, B., Nikoliæ, M. and Savić, S., “Realization of biped walking in unstructured environment using motion primitives,” IEEE Trans. Rob. 30(6), 13181332 (2014).CrossRefGoogle Scholar
Kumar, P. B., Muni, M. K. and Parhi, D. R., “Navigational analysis of multiple humanoids using a hybrid regression-fuzzy logic control approach in complex terrains,” Appl. Soft Comput. 89(89), 106088 (2020).CrossRefGoogle Scholar
Kumar, P. B., Sahu, C. and Parhi, D. R., “Intelligent navigation of a self-fabricated biped robot using a regression controller,” Scientia Iranica 27(1), 262272 (2020).Google Scholar
Rath, A. K., Das, H. C., Parhi, D. R. and Kumar, P. B., “Application of artificial neural network for control and navigation of humanoid robot,” J. Mech. Eng. Sci. 12(2), 35293538 (2018).CrossRefGoogle Scholar
Kumar, P. B. and Parhi, D. R., “Intelligent hybridization of regression technique with genetic algorithm for navigation of humanoids in complex environments,” Robotica 38(4), 565581 (2020).CrossRefGoogle Scholar
Kumar, P. B., Sahu, C., Parhi, D. R., Pandey, K. K. and Chhotray, A., “Static and dynamic path planning of humanoids using an advanced regression controller,” Scientia Iranica 26(1), 375393 (2019).Google Scholar
Sanjuan, J., Serje, D. and Pacheco, J., “Closed form solution for direct and inverse kinematics of a US-RS-RPS 2-DOF parallel robot,” Scientia Iranica Trans. B Mech. Eng. 25(4), 21442154 (2018).Google Scholar
Korayem, M. H., Yousefzadeh, M. and Manteghi, S., “Tracking control and vibration reduction of flexible cable-suspended parallel robots using a robust input shaper,” Scientia Iranica Trans. B Mech. Eng. 25(1), 230252 (2018).Google Scholar
Sayyaadi, H. and Babaee, M., “Control of nonholonomic mobile manipulators for cooperative object transportation”, Scientia Iranica Trans. B Mech. Eng. 21(2), 347 (2014).Google Scholar
Robotics, A. “Nao software 1.14.5 documentation,” http://www.Aldebaran-robotics.com.Google Scholar
Denavit, J., “A kinematic notation for lower-pair mechanisms based on matrices,” ASME J. Appl. Mech., 215221 (1955).CrossRefGoogle Scholar
Pàmies-Vilà, R., Font-Llagunes, J. M., Cuadrado, J. and Alonso, F. J., “Analysis of different uncertainties in the inverse dynamic analysis of human gait,” Mech. Mach. Theory 58(58), 153164 (2012).CrossRefGoogle Scholar