Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T20:53:07.340Z Has data issue: false hasContentIssue false

Identifiable Parameters and Optimum Configurations for Robots Calibration

Published online by Cambridge University Press:  09 March 2009

W. Khalil
Affiliation:
E.N.S.M., Laboratoire d'automatique, URA CNRS 823, 1 Rue de la Noë, 44072 Nantes Cedex (France)
M. Gautier
Affiliation:
E.N.S.M., Laboratoire d'automatique, URA CNRS 823, 1 Rue de la Noë, 44072 Nantes Cedex (France)
Ch. Enguehard
Affiliation:
E.N.S.M., Laboratoire d'automatique, URA CNRS 823, 1 Rue de la Noë, 44072 Nantes Cedex (France)

Summary

This paper presents a general method to identify the geometric parameters of robots. An algorithm is given to calculate the identifiable geometric parameters. The robot location and the tool location parameters are taken into account. The algorithm is generalized to tree structure robots. The problem of selecting the optimum robot configurations to be used during the identification is discussed and a solution is proposed.

Type
Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Whitney, D.E., Lozinski, C.A. and Rourke, J.M., “Industrial robot forward calibration method and resultsASME J. of Dynamics Systems Measurements, and Control 108, pp. 18 (1986).CrossRefGoogle Scholar
2.Roth, S., Mooring, B.W. and Ravani, B., “An overview of robot calibrationIEEE J. Robotics and Automation RA-3, n° 5 (1987).CrossRefGoogle Scholar
3.Khalil, W. and Kleinfinger, J.F., “A new geometric notation for open and closed loop robotsProc. IEEE Robotics and Automation Conf.,San Francisco (1986) pp. 11741180.Google Scholar
4.Dombre, E. and Khalil, W., Modélisation et commande des robots (Edition Hermès, Paris, 1988).Google Scholar
5.Stone, H.W., Sanderson, A.C. and Neuman, C.P., “Arm signature identificationProc. IEEE Robotics and Automation Conf.,San Francise (1986) Pp. 4147.Google Scholar
6.Ziegert, J. and Datseris, P., “Basic considerations for robot calibrationProc. IEEE Robotics and Automation Conf.,Philadelphia (1988) pp. 932938.Google Scholar
7.Wu, C.H.A kinematic CAD tool for the design and control of a robot manipulatorInt. J. of Robotics Research (3, 5867 (1984)).CrossRefGoogle Scholar
8.Sugimoto, K. and Okada, T., Compensation of positioning errors caused by geometric deviations in robot SystemProc. 2nd Int. Symp. of robotics research 3(1) 5867 (1984).Google Scholar
9.Payannet, D., “Modélisation et correction des erreurs statiques des robots manipulateurs” Thèse de doctorat, Montpellier (1986).Google Scholar
10.Hayati, S.A., “Robot arm geometric link calibration”, Proc. IEEE, Decision and Control Conf. 798800 (1988).Google Scholar
11.Wu, C.H., Ho, J. and Young, K.Y., “Design of robot accuracy compensator after calibration” Proc. IEEE Robotics and Automation Conf. 780785 (1988).Google Scholar
12.Khalil, W., Caenen, J.L. and Enguehard, Ch., “Identification and calibration of the geometric parameters of robotsFirst Experimental Robot Conference,Montreal (06, 1989).Google Scholar
13.Borm, J.H. and Menq, C.H., “Experimental Study of observability of parameter errors in robot calibratonIEEE International Conference on Robtics and AutomationScottsdale (1989) pp. 587592.Google Scholar
14.Lawson, C.L. and Hauson, R.J., Solving Least Squares (Prentice Hall, New York, 1974).Google Scholar
15.Powell, M.J.D., “An efficient method for finding the minimun of a function of several variables without calculating derivativesComputer J., 7, 155162 (1964).Google Scholar
16.Harwell Subroutine library, Report AERE, R9185, 8th edition (1988).Google Scholar