Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T12:04:19.792Z Has data issue: false hasContentIssue false

Indexing and alignment of 3-D objects using geometric quasi-invariants

Published online by Cambridge University Press:  05 April 2001

P. Vasseur
Affiliation:
Perception in Robotics Department, GRACSY (Groupe de Recherche sur l'Analyse et la Commande des Systèmes), University of Picardie, 7, rue du Moulin Neuf, 8 AmiensFrance. E-mail: Pascal.Vasseur@sc.u-picardie.fr
C. Pegard
Affiliation:
Perception in Robotics Department, GRACSY (Groupe de Recherche sur l'Analyse et la Commande des Systèmes), University of Picardie, 7, rue du Moulin Neuf, 8 AmiensFrance. E-mail: Pascal.Vasseur@sc.u-picardie.fr
E. Mouaddib
Affiliation:
Perception in Robotics Department, GRACSY (Groupe de Recherche sur l'Analyse et la Commande des Systèmes), University of Picardie, 7, rue du Moulin Neuf, 8 AmiensFrance. E-mail: Pascal.Vasseur@sc.u-picardie.fr
L. Delahoche
Affiliation:
Perception in Robotics Department, GRACSY (Groupe de Recherche sur l'Analyse et la Commande des Systèmes), University of Picardie, 7, rue du Moulin Neuf, 8 AmiensFrance. E-mail: Pascal.Vasseur@sc.u-picardie.fr

Abstract

In this paper, we are introducing a system which is able to recognize polyhedral objects in an indoor environment. Our system is intended to be implemented on autonomous mobile platforms in order to enable the localization or research of a precise item. The algorithm is based on the use of geometric quasi-invariants associated to every object. These geometric quasi-invariants correspond to the ratio of the lengths as well as the angle formed by the pair of segments which are in relationship and which are constituting the object. We present some experimental results gained on one of our platforms in our laboratory.

Type
Research Article
Copyright
© 1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)