Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-19T03:16:07.177Z Has data issue: false hasContentIssue false

Inverse dynamic modeling and analysis of a new caterpillar robotic mechanism by Kane's method

Published online by Cambridge University Press:  20 August 2012

Hong-Xing Wei*
Affiliation:
School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, P. R. China
Tian-Miao Wang
Affiliation:
School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, P. R. China
Miao Liu
Affiliation:
Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
Jiang-Yang Xiao
Affiliation:
Graduate Department, Academy of Armored Force Engineering, Beijing 100072, P. R. China
*
*Corresponding author. E-mail: weihongxing@buaa.edu.cn

Summary

Bionic engineering has been a focus in the field of robotic researches. Inverse dynamic analysis is significant for the determination of dynamic parameters of bionic robots. The present paper uses a newly developed robot modular named Sambot to construct a caterpillar robotic mechanism, and designs a gait of trapezoidal wave locomotion for it. Two open-link models are put forth to simulate the dynamic behavior of such a locomotion. The inverse dynamic differential equations are derived by Kane's method and are then solved numerically by the Runge–Kutta method of the fourth order. Based on the numerical solutions of these differential equations, the applied joint torques required to produce the harmonic trapezoidal wave locomotion are determined finally, providing us important information on the gait control of the caterpillar robotic mechanism. Finally, the theoretical values of the joint torques are applied onto the present caterpillar mechanism to perform a locomotion experiment, which verifies the effectiveness of the present dynamics analysis.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hirose, S., Biologically Inspired Robots: Snake-Like Locomotors and Manipulators (Oxford University Press, Oxford, UK, 1993).Google Scholar
2.Trivedi, D., Rahn, C. D., Kierb, W. M. and Walker, I. D., “Soft robotics: Biological inspiration, state of the art, and future research,” Appl. Bionics Biomech. 5 (3), 99117 (2008).CrossRefGoogle Scholar
3.Haim, A. and Wolf, A., “Control of knee frontal plane moment via modulation of center of pressure a prospective gait analysis study,” J. Biomech. 41 (14), 30103016 (2008).CrossRefGoogle Scholar
4.Casey, T. M., “Energetics of caterpillar locomotion: Biomechanical constraints of a hydraulic skeleton,” Science 252 (5002), 112114 (1991).CrossRefGoogle ScholarPubMed
5.Kondo, H., Morishima, A., Ogura, Y., Momoki, S., Shimizu, J., Hunok, L. and Takanishi, A., “Algorithm of Pattern Generation for Mimicking Disabled Person's Gait,” Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ (Oct., 2008) pp. 724729.CrossRefGoogle Scholar
6.Hirose, S. and Morishima, A., “Design and control of a mobile robot with an articulated body,” Int. J. Robot. Res. 9 (2), 99113 (1990).CrossRefGoogle Scholar
7.Chen, L., Ma, S. G., Wang, Y. C., Li, B. and Duan, D. P., “Design and modelling of a snake robot in traveling wave locomotion,” Mech. Mach. Theory 42 (12), 16321642 (2007).CrossRefGoogle Scholar
8.Wu, X. D. and Ma, S. G., “CPG-based control of serpentine locomotion of a snake-like robot,” Mechatronics 20 (2), 326334 (2010).CrossRefGoogle Scholar
9.Li, N., Zhao, T. S., Zhao, Y. Z. and Lin, Y. G., “Design and realization of a snake-like robot system based on a spatial linkage mechanism,” Robotica 27 (5), 779788 (2009).CrossRefGoogle Scholar
10.Chirikjian, G. S. and Burdick, J., “A modal approach to hyper redundant manipulator kinematics,” IEEE Trans. Robot. Autom. 10 (3), 343354 (1994).CrossRefGoogle Scholar
11.Chirikjian, G. S., “Hyper-redundant manipulator dynamics: A continuum approximation,” Adv. Robot. 9 (3), 217243 (1995).CrossRefGoogle Scholar
12.Chirikjian, G. S., “Inverse kinematics of binary manipulators using a continuum model,” J. Intell. Robot. Syst. 19 (1), 522 (1997).CrossRefGoogle Scholar
13.Chirikjian, G. S., “Design and analysis of some nonanthropomorphic, biologically inspired robots: An overview,” J. Robot. Syst. 18 (12), 701713 (2001).CrossRefGoogle Scholar
14.Wolf, A., Choset, H. H., Brown, H. B. and Casciola, R., “Design and control of a mobile hyper-redundant urban search and rescue robot,” Int. J. Adv. Robot. 19 (8), 221248 (2005).CrossRefGoogle Scholar
15.Brackenbury, J., “Caterpillar kinematics,” Nature 390 (6659), 453453 (1997).CrossRefGoogle Scholar
16.Brackenbury, J., “Fast locomotion in caterpillars,” J. Insect Phys. 45 (6), 525533 (1999).CrossRefGoogle ScholarPubMed
17.Trimmer, B. and Issberner, J., “Kinematics of soft-bodied, legged locomotion in Manduca sexta larvae,” Biol. Bulletin 212 (2), 130142 (2007).CrossRefGoogle ScholarPubMed
18.Lin, H. T., Leisk, G. G. and Trimmer, B., “GoQBot: A caterpillar-inspired soft-bodied rolling robot,” Bioinspir. & Biomim. 6 (2), 026007 (2011).CrossRefGoogle ScholarPubMed
19.Meng, C., Wang, T. M., Guan, S. G., Zhang, L., Wang, J. and Li, X. H., “Design and analysis of gecko-like robot,” Chin. J. Mech. Eng. 24 (2), 224236 (2011).CrossRefGoogle Scholar
20.Xie, H. L., Guo, L. X., Liu, Y. X. and Li, F., “The design and modeling of multi-axis knee artificial leg,” J. Bioact. Compat. Polym. 24 (Suppl.1), 183195 (2009).CrossRefGoogle Scholar
21.Wang, X. Y., Zhang, Y., Fu, X. J. and Xiang, G. S., “Design and kinematic analysis of a novel humanoid robot eye using pneumatic artificial muscles,” J. Bionic Eng. 5 (3), 264270 (2008).CrossRefGoogle Scholar
22.Lin, L. X., Xie, H. B., Zhang, D. B. and Shen, L. C., “Supervised neural Q_learning based motion control for bionic underwater robots,” J. Bionic Eng. 7 (Suppl.), S177S184 (2010).CrossRefGoogle Scholar
23.Wang, F., Wu, C. D., Xu, X. H. and Zhang, Y. Z., “A coordinated control strategy for stable walking of biped robot with heterogeneous legs,” Industrial Robot-An Int. J. 36 (5), 503512 (2009).CrossRefGoogle Scholar
24.Zhang, D. B., Hu, D., Shen, L. C. and Xie, H. B., “Design of an artificial bionic neural network to control fish-robot's locomotion,” Neurocomputing 71 (4–6), 648654 (2008).CrossRefGoogle Scholar
25.Sakuma, S., Yamanishi, Y. and Arai, F., “Magnetically driven microtools actuated by a focused magnetic field for separating of microparticles,” J. Robot. Mechatronics 21 (2), 209215 (2009).CrossRefGoogle Scholar
26.Featherstone, R., Robot Dynamics Algorithms (Kluwer Academic Publishers, Boston/Dordrecht/Lancaster, 1987).CrossRefGoogle Scholar
27.Featherstone, R. and Orin, D. E., “Robot Dynamics: Equations and Algorithms,” Proceedings of the IEEE International Conference on Robotics & Automation, San Francisco, CA (Apr. 2000) pp. 826834.Google Scholar
28.Wu, W. G., Chen, H. T. and Woo, P. Y., “Time optimal path planning for a wheeled mobile robot,” J. Robot. Syst. 17 (11), 585591 (2000).3.0.CO;2-7>CrossRefGoogle Scholar
29.Plitea, N., Hesselbach, J., Pisla, D., Raatz, A., Gherman, B. and Vaida, C., “Dynamic analysis and design of a surgical parallel robot used in laparoscopy,” J. Vibroengineering 11 (2), 215225 (2009).Google Scholar
30.Caux, S. and Zapata, R., “Modeling and control of biped robot dynamics,” Robotica 17 (4), 413426 (1999).CrossRefGoogle Scholar
31.Tatlicioglu, E., Walker, I. D. and Dawson, D. M., “Dynamic modelling for planar extensible continuum robot manipulators,” Int. J. Robot. Autom. 24 (4), 356366 (2009).Google Scholar
32.Nia, H. T., Pishkenari, H. N. and Meghdari, A., “A recursive approach for the analysis of snake robots using Kane's equations,” Robotica 24 (2), 251256 (2006).CrossRefGoogle Scholar
33.Stoenescu, E. D. and Marghitu, D. B., “Effect of prismatic joint inertia on dynamics of kinematic chains,” Mech. Mach. Theory 39 (4), 431443 (2004).CrossRefGoogle Scholar
34.Choi, H. B., Konno, A. and Uchiyama, M., “Inverse dynamics analysis of a 4-d.o.f. parallel robot H4,” Adv. Robot. 24 (1–2), 159177 (2010).CrossRefGoogle Scholar
35.Kawamura, S., Iwamoto, Y., Minamoto, H., Kamigaki, T., Taniyama, Y. and Kawamura, H., “Structural design optimization for a two-link robot to suppress undesirable vibration,” J. Adv. Mech. Des. Syst. Manuf. 3 (4), 289298 (2009).CrossRefGoogle Scholar
36.Balafoutis, C. A., “A survey of efficient computational methods for manipulator inverse dynamics,” J. Intell. Robot. Syst. 9 (1–2), 4571 (1994).CrossRefGoogle Scholar
37.Neuman, C. P. and Murray, J. J., “Symbolically efficient formulations for computational robot dynamics,” J. Robot. Syst. 4 (6), 743769 (1987).CrossRefGoogle Scholar
38.Li, C. J. and Sankar, T. S., “Systematic methods for efficient modeling and dynamics computation of flexible robot manipulators,” IEEE Trans. Syst. Man Cybern. 23 (1), 7795 (1993).CrossRefGoogle Scholar
39.Meghdari, A., Karimi, R., Pishkenari, H. N., Gaskarimahalle, A. L. and Mahboobi, S. H., “An effective approach for dynamic analysis of rovers,” Robotica 23 (7), 771780 (2005).CrossRefGoogle Scholar
40.Wei, H., Cai, Y., Li, D., Li, H. and Wang, T., “Sambot: A Self-Assembly Modular Robot for Swarm Robot,” Proceedings of the IEEE Conference on Robotics and Automation (ICRA2010), Anchorage, Alaska, USA (May 3–8, 2010) pp. 6671.Google Scholar
41.Wei, H. X., Chen, Y. D., Tan, J. D. and Wang, T. M., “Sambot: A self-assembly modular system,” IEEE/ASME Trans. Mechatronics 16 (4), 745757 (2011).CrossRefGoogle Scholar
42.Wei, H. X., Chen, Y. D., Liu, M., Cai, Y. P. and Wang, T. M., “Swarm robots: From self-assembly to locomotion,” Comput. J. 54 (9), 14651474 (2011).CrossRefGoogle Scholar