Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T05:41:57.320Z Has data issue: false hasContentIssue false

The joint velocity, torque, and power capability evaluation of a redundant parallel manipulator

Published online by Cambridge University Press:  27 July 2010

Yongjie Zhao*
Affiliation:
Department of Mechatronics Engineering, Shantou University, Shantou City, Guangdong 515063, P. R. China Shantou Institute for Light Industrial Equipment Research, Shantou City, Guangdong 515021, P. R. China
Feng Gao
Affiliation:
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, P. R. China Email: fengg@sjtu.edu.cn
*
*Corresponding author. E-mail: meyjzhao@yahoo.com.cn

Summary

The evaluation of joint velocity, torque, and power capability of the 8-PSS redundant parallel manipulator is investigated in this paper. A series of new joint capability indices with obvious physical meanings are presented. The torque index used to evaluate the respective joint dynamic capability of the redundant parallel manipulator is decoupled into the acceleration, velocity, and gravity term. With these velocity, torque, and power indices, it is possible to control the respective joint capability of the redundant parallel manipulator in different directions. The indices have been applied to evaluate the joint capability of the redundant parallel manipulator by simulation. They are general and can be used for other types of parallel manipulators.

Type
Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Merlet, J. P., “Jacobian, Manipulability, condition number, and accuracy of parallel robots,” ASME J. Mech. Des. 128 (1), 199206 (2006).CrossRefGoogle Scholar
2.Merlet, J. P., “Parallel robot: Open problems,” [Online]. Available: http://www-sop.inria.fr/coprin/equipe/merlet/merlet_eng.html. (1999).CrossRefGoogle Scholar
3.Merlet, J. P., “Still a long way to go on the road for parallel mechanisms,” [Online]. Available: http://www-sop.inria.fr/coprin/equipe/merlet/merlet_eng.html. (2002).Google Scholar
4.Gosselin, C. M. and Angeles, J., “The optimum kinematic design of a planar three-degree-of-freedom parallel manipulators,” ASME J. Mech. Transm. Autom. Des. 110 (1), 3541 (1988).CrossRefGoogle Scholar
5.Gosselin, C. M. and Angeles, J., “The optimum kinematic design of a spherical three Degree-of-Freedom parallel manipulator,” ASME J. Mech. Transm. Autom. Des. 111 (2), 202207 (1989).CrossRefGoogle Scholar
6.Gosselin, C. M. and Angeles, J., “A global performance index for the kinematic optimization of robotic manipulators,” ASME J. Mech. Des. 113 (3), 220226 (1991).CrossRefGoogle Scholar
7.Lipkin, H. and Duffy, J., “Hybrid twist and wrench control for a robotic manipulator,” ASME J. Mech. Transm. Autom. Des. 110 (6), 138144 (1988).CrossRefGoogle Scholar
8.Doty, K. L., Melchiorri, C. and Bonevento, C., “A theory of generalized inverse applied to robotics,” Int. J. Rob. Res. 12 (1), 119 (1993).CrossRefGoogle Scholar
9.Doty, K. L., Melchiorri, C. and Schwartz, E. M., “Robot manipulability,” IEEE Trans. Robot. Autom. 11 (3), 462468 (1995).CrossRefGoogle Scholar
10.Gosselin, C. M., “Dexterity Indices for Planar and Spatial Robotic Manipulators,” Proceedings of the 1990 IEEE International Conference on Robotics and Automation, Cincinnati, USA (1990) pp. 650655.CrossRefGoogle Scholar
11.Pond, G. and Carretero, J. A., “Formulating Jacobian matrices for the dexterity analysis of parallel manipulators,” Mech. Mach. Theory 41 (9), 15051519 (2006).CrossRefGoogle Scholar
12.Altuzarra, O., Salgado, O. and Petuya, V., “Point-based Jacobian formulation for computational kinematics of manipulators,” Mech. Mach. Theory 41 (12), 14071423 (2006).CrossRefGoogle Scholar
13.Kim, S. G. and Ryu, J., “New dimensionally homogeneous Jcaobian matrix formulation by three end-effector points for optimal design of parallel manipulators,” IEEE Trans. Robot. Autom. 19 (4), 731737 (2003).Google Scholar
14.Yoshikawa, T., “Manipulability of robotic mechanisms,” Int. J. Robot. Res. 4 (2), 39 (1985).CrossRefGoogle Scholar
15.Yoshikawa, T., “Translational and Rotational Manipulability of Robotic Manipulators,” Proceedings of the American Control Conference, San Diego, USA (1991) pp. 10701075.Google Scholar
16.Hong, K. S. and Kim, J. G., “Manipulability analysis of a parallel machine tool: application to optimal link length design,” J. Robot. Syst. 17 (8), 403415 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
17.Ma, O. and Angeles, J., “The Concept of Dynamics Isotropy and its Applications to Inverse Kinematics and Trajectory Planning,” Proceedings of the 1990 IEEE International Conference on Robotics and Automation, Cincinnati, USA (1990) pp. 481486.CrossRefGoogle Scholar
18.Ma, O. and Angeles, J., “Optimum Design of Manipulators Under Dynamic Isotropy Conditions,” Proceedings of the 1993 IEEE International Conference on Robotics and Automation, Atlanta, USA (1993) pp. 470475.Google Scholar
19.Asada, H., “A geometrical representation of manipulator dynamics and its application to arm design,” ASME J. Dyn. Syst. Meas. Control 105 (3), 131135 (1983).CrossRefGoogle Scholar
20.Asada, H., “Dynamic Analysis and Design of Robot Manipulators Using Inertia Ellipsoids,” Proceedings of the 1984 IEEE International Conference on Robotics and Automation, Atlanta, USA (1984) pp. 94102.CrossRefGoogle Scholar
21.Yoshikawa, T., “Dynamic manipulability of robot manipulators,” J. Robot. Syst. 2 (1), 113124 (1985).Google Scholar
22.Li, M., Huang, T. and Mei, J. P., “Dynamic formulation and performance comparison of the 3-DOF modules of two reconfigurable PKMs—the TriVariant and the Tricept,” ASME J. Mech. Des. 127 (6), 11291136 (2005).CrossRefGoogle Scholar
23.Huang, T., Mei, J. P. and Li, Z. X., “A method for estimating servomotor parameters of a parallel robot for rapid pick-and-place operations,” ASME J. Mech. Des. 127 (7), 596601 (2005).CrossRefGoogle Scholar
24.Chiacchio, P. and Concilio, M., “The Dynamics Manipulability Ellipsoid for Redundant Manipulators,” Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium (1998) pp. 95100.Google Scholar
25.Chiacchio, P., Chiaverini, S. and Sciavicco, L., “Reformulation of Dynamic Manipulability Ellipsoid for Robotic Manipulators,” Proceedings of the 1991 IEEE International Conference on Robotics and Automation, California, USA (1991) pp. 21922197.CrossRefGoogle Scholar
26.Park, F. C. and Kim, J. W., “Manipulability of closed kinematic chains,” ASME J. Mech. Des. 120 (4), 542548 (1998).CrossRefGoogle Scholar
27.Gregorio, R. D. and Parenti-Castelli, V., “Dynamic Performance Characterization of Three-Dof Parallel Manipulators,” In:Advances in Robot Kinematics: Theory and Applications (Lenarcic, J. and Thomas, F., eds.) (Kluwer Academic Publishers, Netherlands, 2002) pp. 1120.CrossRefGoogle Scholar
28.Kim, J., Park, F. C. and Ryu, S. J., “Design and analysis of a redundantly actuated parallel mechanism for rapid machining,” IEEE Trans. Robot. Autom. 17 (4), 423434 (2001).CrossRefGoogle Scholar
29.Merlet, J. P., “Redundant parallel manipulators,” Lab. Robot. Autom. 8 (1), 1724 (1996).3.0.CO;2-#>CrossRefGoogle Scholar
30.Nokleby, S. B., Fisher, R. and Podhorodeski, R. P., “Force capabilities of redundantly-actuated parallel manipulators,” Mech. Mach. Theory 40 (5), 578599 (2005).CrossRefGoogle Scholar
31.Wang, J. and Gosselin, C. M., “Kinematic analysis and design of kinematically redundant parallel mechanisms,” ASME J. Mech. Des. 126 (1), 109118 (2004).CrossRefGoogle Scholar
32.Cheng, H., Yiu, Y. K. and Li, Z. X., “Dynamics and control of redundantly actuated parallel manipulators,” IEEE Trans. Mech. 8 (4), 483491 (2003).CrossRefGoogle Scholar
33.Huang, Z. and Kong, X. W., “Kinematic analysis on the spatial parallel mechanisms with redundant degree of freedom,” Chin. J. Mech. Eng. 31 (3), 4450 (1995).Google Scholar
34.Müller, A., “Internal preload control of redundantly actuated parallel manipulators—its application to backlash avoiding control,” IEEE Trans. Robot. 21 (4), 668677 (2005).CrossRefGoogle Scholar
35.Mohamed, M. G. and Gosselin, C. M., “Design and analysis of kinematically redundant parallel manipulators with configurable platforms,” IEEE Trans. Robot. 21 (3), 277287 (2005).CrossRefGoogle Scholar
36.Ebrahimi, I., Carretero, J. A. and Boudreau, R., “3-PRRR redundant planar parallel manipulator: Inverse displacement, workspace and singularity analyses,” Mech. Mach. Theory 42 (8), 10071016 (2007).CrossRefGoogle Scholar
37.Zanganeh, K. E. and Angeles, J., “Mobility and Position Analyses of a Novel Redundant Parallel Manipulator,” Proceeding of the 1994 IEEE International Conference on Robotics and Automation, California, USA (1994) pp. 30493054.CrossRefGoogle Scholar
38.Tsai, L. W., “Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work,” ASME J. Mech. Des. 122 (1), 39 (2000).CrossRefGoogle Scholar