Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T07:28:19.476Z Has data issue: false hasContentIssue false

Kinematic and dynamic model-based control of wheeled mobile manipulators: a unified framework for reactive approaches

Published online by Cambridge University Press:  01 March 2007

V. Padois*
Affiliation:
Stanford Artificial Intelligence Laboratory, Stanford University, CA 94305, USA
J.-Y. Fourquet
Affiliation:
Laboratoire Génie de Production, Ecole Nationale d'Ingénieurs de Tarbes, 65 000 Tarbes, France
P. Chiron
Affiliation:
Laboratoire Génie de Production, Ecole Nationale d'Ingénieurs de Tarbes, 65 000 Tarbes, France
*
*Corresponding author. E-mail: vpadois@stanford.edu

Summary

The work presented in this paper aims at providing a unified modelling framework for the reactive control of wheeled mobile manipulators (WMM). Where most work in the literature often provides models, sometimes simplified, of a given type of WMM, an extensive description of obtaining explicit kinematic and dynamic models of those systems is given. This modelling framework is particularly well suited for reactive control approaches, which, in the case of mobile manipulation missions, are often necessary to handle the complexity of the tasks to be fulfilled, the dynamic aspect of the extended workspace and the uncertainties on the knowledge of the environment. A flexible reactive framework is thus also provided, allowing the sequencing of operational tasks (in our case, tasks described in the end-effector frame) whose natures are different but also an on-line switching mechanism between constraints that are to be satisfied using the system redundancy. This framework has been successfully implemented in simulation and on a real robot. Some of the obtained results are presented.

Type
Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Seraji, H., “An On-Line Approach to Coordinated Mobility and Manipulation,” Proceedings of the 1993 IEEE International Conference on Robotics and Automation, Atlanta, GA (1993) pp. 2835.Google Scholar
2.Yamamoto, Y. and Yun, X., “Recent Trends in Mobile Robots”, In: Coordinating locomotion and Manipulation of a Mobile Manipulator (Zheng, Y. F., ed.) (World Scientific, Singapore, 1993) chap. 6. pp. 157181.Google Scholar
3.Yamamoto, Y., Control and Coordination of Locomotion and Manipulation of a Wheeled Mobile Manipulator, Ph.D. Thesis (Philadelphia, PA: University of Pennsylvania, (1994).CrossRefGoogle Scholar
4.Kang, S., Komoriya, K., Yokoi, K., Koutoku, T. and Tanie, K., “Utilization of Inertial Effect in Damping-Based Posture Control of Mobile Manipulator”, Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, South Korea (2001) pp. 12771282.Google Scholar
5.Tan, J. and Xi, N., “Unified Model Approach for Planning and Control of Mobile Manipulators,” Proceedings of the International Conference on Robotics and Automation, Seoul, South Korea (2001) pp. 31453152.Google Scholar
6.Umeda, Y., Nakamura, D., Mukarami, T. and Ohnishi, K., “Hybrid Position/Force Control of a Mobile Manipulator Based on Cooperative Task Sharing,” Proceedings of the 1999 IEEE International Symposium on Industrial Electronics, Bled, Slovenia (1999) pp. 139144.Google Scholar
7. D. Omren, B. Nemec and L. lajpah, “Torque-Velocity Control Algorithm for On-Line Obstacle Avoidance for Mobile Manipulators”, Proceedings of the 2003 International Conference on Industrial Technology, Maribor, Slovenia (2003) vol. 2, pp. 784–789.Google Scholar
8.Brock, O., Khatib, O. and Viji, S., “Task Consistent Obstacle Avoidance and Motion Behavior for Mobile Manipulation”, Proceedings of the International Conference on Robotics and Automation, Washington, DC (2002), pp. 388393, iSBN 0-7803-7273-5.Google Scholar
9.Tanner, H. G., Loizou, S. and Kyriakopoulos, K., “Nonholonomic navigation and control of cooperating mobile manipulators,” IEEE Trans. Robot. Autom. 19 (1), 5364 (2003).CrossRefGoogle Scholar
10.Bayle, B., Renaud, M. and Fourquet, J.-Y., “Nonholonomic mobile manipulators: kinematics, velocities and redundancies”, J. Intell. Robot. Syst. 36, 4563 (2003).CrossRefGoogle Scholar
11.Campion, G., Bastin, G. and Novel, B. D'Andréa, “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots”, IEEE Trans. Autom. Control 12, 4762 (1996).CrossRefGoogle Scholar
12.Fruchard, M., Morin, P. and Samson, C., A Framework for the Control of Nonholonomic Mobile Manipulators (Rapport de recherche N° 5556 de l'Institut National de Recherche en Informatique et en Automatique, Sophia-Antipolis, France, (2005).Google Scholar
13.Morin, P. and Samson, C., “Practical stabilization of driftless systems on Lie groups: the transverse function approach”, IEEE Trans. Autom. Control 48, 14961508 (2003).CrossRefGoogle Scholar
14.Bayle, B., “Modélisation et Commande Cinématiques des Manipulateurs Mobiles à Roues,” Ph.D. Thesis (Toulouse, France: Laboratoire d'Analyse et d'Architecture des Systèmes, (2001).Google Scholar
15.Greenwood, D. T., Principles of Dynamics, 2nd ed. (Prentice Hall, Englewood Cliffs, NJ, 1988), iSBN 0-13-709981-9.Google Scholar
16.Khalil, W. and Kleinfinger, J., “A New Geometric Notation for Open and Closed-Loop Robots,” Proceedings of the 1986 International Conference on Robotics and Automation, San Francisco, CA (1986) vol. 2, pp. 11741179, iSBN 0-8186-0695-9.CrossRefGoogle Scholar
17.Thuilot, B., d'Andrea-Novel, B. and Micaelli, A., “Modeling and feedback control of mobile robots equipped with several steering wheels,” IEEE Trans. Robot. Autom. 12 (3), 375390 (1996).CrossRefGoogle Scholar
18.Padois, V., “Enchaînements Dynamiques de Tâches pour des Manipulateurs Mobiles à Roues” Ph.D. Thesis (Toulouse, France: Institut National Polytechnique de Toulouse, (2005).Google Scholar
19.Israel, A. Ben and Greville, T., Generalised Inverses: theory and Applications, 2nd ed. (Springer, Berlin, 2003), iSBN 0-387-00293-6.Google Scholar
20.Pin, F. G. and Culioli, J. C., “Multi-Criteria Position and Configuration Optimization for Redundant Platform/Manipulator Systems,” Proceedings of the 1990 IEEE International Workshop on Intelligent Robots and Systems (1990) pp. 103–107.Google Scholar
21.Nakamura, Y., Advanced Robotics: redundancy and optimization (Addison-Wesley, Reading, MA, 1991), iSBN 0-201-15198-7.Google Scholar
22.Baerlocher, P. and Boulic, R., “An inverse kinematic architecture enforcing an arbitrary number of strict priority levels,” Vis. Comput. 20 (6), 402417 (2004).CrossRefGoogle Scholar
23.Mansard, N. and Chaumette, F., “Directional Redundancy: a New Approach of the Redundancy Formalism,” Proceedings of the IEEE Conference on Decision and Control and European Control Conference, CDC/ECC 2005, Seville, Spain (2005) pp. 53665371.Google Scholar
24.Chung, J. and Velinsky, S., “Modeling and control of a mobile manipulator,” Robotica 16, 607613 (1998).CrossRefGoogle Scholar
25.Tanner, H. G. and Kyriakopoulos, K., “Mobile manipulator modeling with Kane's approach,” Robotica 19, 675690 (2001).CrossRefGoogle Scholar
26.Yu, Q. and Chen, I.-M., “A general approach to the dynamics of nonholonomic mobile manipulator systems,” J. Dyn. Syst. Meas. Control 124 (4), 512521 (2002).CrossRefGoogle Scholar
27. J. Nemark and N. Fufaev, “Dynamics of nonholonomic systems,” In: Translations of Mathematical Monographs (American Mathematical Society, 1972) vol. 33. Translated by J. R. Barbour.Google Scholar
28.Bloch, A., Baillieul, J., Crouch, P. and Marsden, J., Nonholonomic mechanics and control (Springer, Berlin, 2003), iSBN 0-387-95535-6.CrossRefGoogle Scholar
29.Park, J. and Khatib, O., “Multi-Link Multi-Contact Force Control for Manipulators,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain (2005) pp. 36133618.CrossRefGoogle Scholar
30.Khatib, O., “A unified approach for motion and force control of robot manipulators: the operational space formulation,” IEEE J. Robot. Autom. 3 (1), 4353 (1987).CrossRefGoogle Scholar
31.Fleury, S., Herrb, M. and Chatila, R., “GenoM: a Tool for the Specification and the Implementation of Operating Modules in a Distributed Robot Architecture,” Proceedings of the Intelligent Robots and Systems, Grenoble, France (1997) vol. 2, pp. 842848.Google Scholar
32.Padois, V., Chiron, P. and Fourquet, J.-Y., “Controlling Dynamic Contact Transition for Nonholonomic Mobile Manipulators,” Proceedings of the 2004 International Conference on Intelligent Robots and Systems, Sendai, Japan (2004) vol. 4, pp. 38173822. iSBN 0-7803-8464-4.Google Scholar
33.Walker, I. D., “Impact configurations and measures for kinematically redundant and multiple armed robot systems,” IEEE Trans. Robot. Autom. 10 (5), 670683 (1994).CrossRefGoogle Scholar
34.Padois, V., Fourquet, J.-Y., Chiron, P. and Renaud, M., “On Contact Transition for Nonholonomic Mobile Manipulators,” Proceedings of the 9th International Symposium on Experimental Robotics, Singapore (2004). Springer Tracts in Advanced Robotics vol. 21, pp. 207216 (Springer, Berlin, 2006) ISBN 3 540 28816 3.Google Scholar
35.Herrb, M., “GDHE — Graphical Display for Hilare Experiments: user Guide,” vers. 3.6, (2005). LAAS CNRS laboratory, Touloure, France.Google Scholar