Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T07:39:58.507Z Has data issue: false hasContentIssue false

Kinematic dexterity of mobile manipulators: an endogenous configuration space approach

Published online by Cambridge University Press:  02 March 2021

Krzysztof Tchoń
Affiliation:
Institute of Engineering Cybernetics, Wroclaw University of Technology, ul. Janiszewskiego 11/17, 50–372 Wroclaw (Poland). E-mail: {tchon,kz}@ict.pwr.wroc.pl
Katarzyna Zadarnowska
Affiliation:
Institute of Engineering Cybernetics, Wroclaw University of Technology, ul. Janiszewskiego 11/17, 50–372 Wroclaw (Poland). E-mail: {tchon,kz}@ict.pwr.wroc.pl

Summary

A mobile manipulator is treated as a robotic system composed of a non-holonomic mobile platform and a holonomic manipulator mounted on the platform. The kinematics of the mobile manipulator can be represented as a driftless control system with outputs. By adopting the endogenous configuration space approach we propose two kinematic dexterity measures, called local and global dexterity. The local dexterity, modeled upon the manipulability of stationary manipulators, indicates how infinitesimal motions in the configuration space propagate to the taskspace of the mobile manipulator. The global dexterity corresponds to L2-norm of the local dexterity over a prescribed region of the configuration space. Advantages of the endogenous dexterity measures over traditional performance measures of mobile manipulators known from the literature are described. Both the dexterities are employed for determining optimal configurations and optimal geometries of an exemplary mobile manipulator.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ligeois, A., “Automatic supervisory control for the configuration and behavior of multibody mechanisms”, IEEE Trans. Syst. Man Cybernet. 7, 842868 (1977).Google Scholar
2. Yoshikawa, T., “Manipulability of robotic mechanisms”, Int. J. Robotics Research 4, 39 (1985).CrossRefGoogle Scholar
3. Doty, K.L., Melchiorini, C., Schwartz, E.M. and Bonivento, C., “Robot manipulability”, IEEE Trans. Robot. Automat. 11, 462468 (1995).CrossRefGoogle Scholar
4. Ch. Klein, A. and Blaho, B.E., “Dexterity measures for the design and control of kinematically redundant manipulators”, Int. J. Robotics Research 6, 7282 (1987).CrossRefGoogle Scholar
5. van den Doel, K. and Pai, D.K., “Performance measures for robot manipulators: A unified approach”, Int. J. Robotics Research 15, 92111 (1998).CrossRefGoogle Scholar
6. Gosselin, C. and Angeles, J., “A global performance index for the kinematic optimization of robotic manipulators”, Trans. ASME 113, 220226 (1991).CrossRefGoogle Scholar
7. Ma, O. and Angeles, J., “Optimum design of manipulators under dynamic isotropy conditions”, Proc. 1993 IEEE Int. Conf. Robot. Automat., Atlanta, GA, (1993) pp. 470475.Google Scholar
8. Park, F.C. and Brockett, R.W., “Kinematic dexterity of robotic mechanisms”, Int. J. Robotic Research 13, 115 (1994).CrossRefGoogle Scholar
9. Yamamoto, Y. and Yun, X., “Coordinating locomotion and manipulation of a mobile manipulator”, IEEE Trans. Automat. Contr. 39, 13261332 (1994).CrossRefGoogle Scholar
10. Yamamoto, Y. and Yun, X., “Unified analysis of mobility and manipulability of mobile manipulators”, Proc. 1999 IEEE Int. Conf. Robot. Automat., Detroit, MI (1999) pp. 12001206.Google Scholar
11. Foulon, G., Fourquet, I.Y. and Renaud, M., “On coordinated taskes for non-holonomic mobile manipulators”, Proc. 5th IFAC Symp. Robot Control, Nantes, France (1997) pp. 491498.Google Scholar
12. Bayle, B., Fourquet, I.Y., and Renaud, M., “Manipulability analysis for mobile manipulators”, Proc. 2001 IEEE Int. Conf. Robot. Automat., Seoul, Korea (2001) pp. 12511256.Google Scholar
13. Yamamoto, Y. and Fukuda, S., “Trajectory planning of multiple mobile manipulators with collision avoidance capability”, Proc. 2002 IEEE Int. Conf. Robot. Automat., Washington DC (2002) pp. 35653570.Google Scholar
14. Gardner, J.F. and Velinsky, S.A., “Kinematics of mobile manipulators and implications for design”, J. Robotic Systems 17, 309320 (2000).3.0.CO;2-9>CrossRefGoogle Scholar
15. Khatib, O., Yokoi, K., Chang, K., Ruspini, D., Holmberg, R. and Casal, A., “Coordination and decentralized cooperation of multiple mobile manipulators”, J. Robotic Systems 13, 755764 (1996).3.0.CO;2-U>CrossRefGoogle Scholar
16. Khatib, O., Yokoi, K., Chang, K. and Casai, A., “Robots in human environments: Basic autonomous capabilities”, Int. J. Robotics Research 18, 684696 (1999).CrossRefGoogle Scholar
17. Desai, J.P. and Kumar, V., “Motion planning for cooperative mobile manipulators”, J. Robotic Systems 16, 557579 (1999).3.0.CO;2-H>CrossRefGoogle Scholar
18. Tchoń, K. and Muszyński, R., “Instantaneous kinematics and dexterity of mobile manipulators”, Proc. 2000 IEEE Int. Conf. Robot. Automat., San Francisco, CA (2000) pp. 24932498.Google Scholar
19. Tchoń, K., Jakubiak, J. and Muszyński, R., “Kinematics of mobile manipulators: A control theoretic perspective”, Archives of Control Sciences 11, 195221 (2001).Google Scholar
20. Tchoń, K. and Jakubiak, J., “Extended Jacobian inverse kinematics algorithms for mobile manipulators”, J. Robotic Systems 19, 443454 (2002).CrossRefGoogle Scholar
21. Tchoń, K., “Repeatability of inverse kinematics algorithms for mobile manipulators”, IEEE Trans. Autom. Control 47, 13761380 (2002).CrossRefGoogle Scholar
22. Muszyński, R. and Tchoń, K., “Dexterity ellipsoid for mobile robots”, Proc. 2000 Int. Conf. Models Methods Automat. Robot., Międzyzdroje, Poland (2000) pp. 665–670.Google Scholar
23. Zadarnowska, K., “Dexterity measures for mobile manipulators”, Proc. 7th Nat. Robotics Conf., Lądek-Zdrój, Poland (2001) (in Polish) Vol. 1, pp. 91100.Google Scholar
24. Canudas de Wit, C., Siciliano, B. and Bastin, G., Theory of Robot Control (Springer-Verlag. New York, 1996).CrossRefGoogle Scholar
25. Zadarnowska, K. and Tchoń, K., “Dynamic dexterity of mobile robots”, Proc. 14th Nat. Automation Conf., Zielona Góra, Poland (2002) (in Polish), Vol. 2, pp. 669–674.Google Scholar