Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T21:57:36.312Z Has data issue: false hasContentIssue false

LMS robotic hand grasp and manipulation planning (an isomorphic exoskeleton approach)

Published online by Cambridge University Press:  01 March 2008

D. Chaigneau
Affiliation:
Laboratoire de Mécanique des Solides (LMS), UMR CNRS 6610, Université de Poitiers, SP2MI, 2 Bd Pierre et Marie Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
M. Arsicault*
Affiliation:
Laboratoire de Mécanique des Solides (LMS), UMR CNRS 6610, Université de Poitiers, SP2MI, 2 Bd Pierre et Marie Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
J.-P. Gazeau
Affiliation:
Laboratoire de Mécanique des Solides (LMS), UMR CNRS 6610, Université de Poitiers, SP2MI, 2 Bd Pierre et Marie Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
S. Zeghloul
Affiliation:
Laboratoire de Mécanique des Solides (LMS), UMR CNRS 6610, Université de Poitiers, SP2MI, 2 Bd Pierre et Marie Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
*
*Corresponding author. E-mail: Marc.Arsicault@lms.univ-poitiers.fr

Summary

In order to widen the potentialities of manipulation of the Laboratoire de Mécanique des solides (LMS) mechanical hand, we developed a new planning approach based on the use of a specific exoskeleton. This one has kinematics architecture and dimensions identical to the mechanical hand. This feature allows us to obtain manipulation trajectories for the mechanical hand, very easily and very quickly, by using the exoskeleton, without complex calibration. Manipulation's trajectories are replayed offline with an autonomous control, and, consequently, the exoskeleton is not used with any feedback strategy for telemanipulation. This paper presents the characteristics of this exoskeleton and the graphic interface that we developed. This one uses a method to determine the object's evolution during the manipulation with the exoskeleton, without using exteroceptive sensors. This new approach was tested for standard trajectories by simulation on a Computer-aided design (CAD) robotics system and by using the mechanical hand. Thus, we validate the use concept of an isomorphic exoskeleton to mechanical hand for manipulation planning with the LMS mechanical hand.

Type
Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bouzit, M., Burdea, G., Popescu, G. and Boian, R., “The Rutgers Master II—New design force-feedback glove,” IEEE/ASME Trans. Mechatronics 7 (2), 256263 (2002).CrossRefGoogle Scholar
2.Rohling, R. N., Hollerbach, J. M. and Jacobsen, S. C., “Optimized fingertip mapping: A general algorithm for robotic hand teleoperation,” Presence 2 (3), 203220 (1993).CrossRefGoogle Scholar
3.Bouzit, M., Coiffet, P. and Burdea, G., “The LRP Dextrous Hand Master,” Proceedings of the Virtual Reality Systems Fall'93, New York (Sep., 1993).Google Scholar
4.Choi, B. H., Choi, H. R. and Chung, W. J., “Two-fingered Hand Exoskeleton Driven by Ultrasonic Motor,” Proceedings of the 3rd IWAM (Dec. 1999) pp. 389–394.Google Scholar
5.Koyama, T., Yamano, I., Takemura, K. and Maeno, T., “Multi-Fingered Exoskeleton Haptic Device Using Passive Force Feedback for Dexterous Teleoperation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (Oct. 2002) pp. 2905–2910.Google Scholar
6.Mouri, T., Kawasaki, H. and Umebayashi, K., “Developments of New Anthropomorphic Robot Hand and its Master Slave System,” Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (2005) pp. 3474–3479.Google Scholar
7.5DT Data Glove Series [Online]. Available: http://www.vrlogic.com (2007).Google Scholar
8.CyberGlove® II Wireless Data Glove [Online]. Available: http://www.immersion.com/3d/phprint.php (2007).Google Scholar
9.Wireless Motion Capture Glove [Online]. Available: http://motionanalysis.com/about_mac/talon.html (2007).Google Scholar
10.Fischer, M., van der Smagt, P. and Hirzinger, G., “Learning Techniques in a Dataglove Based Telemanipulation System for the DLR Hand,” Proceedings of the IEEE International Conference on Robotics & Automation (1998) pp. 1603–1608.Google Scholar
11.Hu, H., Gao, X., Li, J., Wang, J. and Liu, H., “Calibrating Human Hand for Teleoperating the HIT/DLR Hand,” Proceedings of the IEEE International Conference on Robotics and Automation (Apr. 2004) pp. 4571–4576.Google Scholar
12.Griffin, W. B., Findley, R. P., Turner, M. L. and Cutkosky, M. R., “Calibration and Mapping of a Human Hand for Dexterous Telemanipulation,” Proceeding of the ASME IMECE Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems (2000), vol. 69, no. 2 pp. 1145–1152.Google Scholar
13.Kahlesz, F., Zachmann, G. and Klein, R., “Visual-fidelity dataglove calibration,” Proceedings of the Computer Graphics International (June 2004) pp. 403–410.Google Scholar
14.Zeghloul, S., Blanchard, B. and Ayrault, M., “SMAR: A robot modeling and simulation system,” Robotica 15 (P. 1), pp. 6373 (1997).CrossRefGoogle Scholar
15.Gazeau, J. P., Zeghloul, S., Arsicault, M. and Lallemand, J. P., “The LMS Hand: Force and Position Controls in the Aim of the Fine Manipulation of Objects,” Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea (May 2001) pp. 2642–2648.Google Scholar
16.Gazeau, J. P., Zeghloul, S., Arsicault, M. and Lallemand, J. P., “Manipulation with the LMS mechanical hand: a strategy for fingertip manipulation tasks,” J. Eur. Autom. 36 (9), 12051219 (2002).Google Scholar
17.Gazeau, J. P., Zeghloul, S. and Ramirez, G., “Manipulation with a polyarticulated mechanical hand: a new efficient real-time method for computing fingertip forces for a global manipulation strategy,” Robotica 23, 479490 (2005).CrossRefGoogle Scholar
18.Kerr, J. and Roth, B., “Analysis of multifingered hands,” Int. J. Robot. Res. 4 (4), 317 (1986).CrossRefGoogle Scholar