Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T11:46:19.128Z Has data issue: false hasContentIssue false

A meta-study of PUMA 560 dynamics: A critical appraisal of literature data

Published online by Cambridge University Press:  09 March 2009

Peter I. Corke
Affiliation:
Division of Manufacturing Technology CSIRO, Preston, Victoria 3072 (Australia).
Brian Armstrong-Hélouvry
Affiliation:
Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201 (U.S.A.)

Summary

The paper presents a meta-study of the kinematic, dynamic and electrical parameters for the PUMA 560 robot. Parameter values which have been reported in the literature are transformed into a single system of units and coordinates, and differences in the data and measurement techniques are discussed. New data have been gathered and are presented where the record was incomplete.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Corke, P. and Good, M., “Dynamic effects in highperformance visual servoing” Proc. IEEE Int. Conf. Robotics and Automation(1992) pp. 18381843Google Scholar
2.Armstrong, B., Khatib, O. and Burdick, J., “The explicit dynamic model and inertial parameters of the Puma 560 arm” Proc. IEEE Int. Conf. Robotics and Automation 1 (1986) pp. 510518.Google Scholar
3.Fu, K.S., Gonzalez, R.C. and Lee, C.S.G., Robotics, Control, Sensing, Vision and Intelligence (McGraw-Hill, New York, 1987).Google Scholar
4.Lee, C.S.G., “Robot arm kinematics, dynamics and controlIEEE Computer 15, 6280 (1982).Google Scholar
5.Paul, R., Rong, M. and Zhang, H., “Dynamics of Puma manipulator” American Control Conference(1983) pp. 491496.Google Scholar
6.Paul, R.P. and Zhang, H., “Computationally efficient kinematics for manipulators with spherical wristsInt. J. Robot. Res. 5, No. 2, 3244 (1986).CrossRefGoogle Scholar
7.Tarn, T.J., Bejczy, A.K., Han, S. and Yun, X., “Inertia parameters of Puma 560 robot arm” Tech. Rep. SSM-RL-85–01 (Washington University, St. Louis, MO., 1985).Google Scholar
8.Vistnes, R., “Breaking away from VAL” Tech. Rep. (Unimation Inc. 1981).Google Scholar
9.Lloyd, J., “Implementation of a robot control development environment” Master’s Thesis (McGill University, 1985).Google Scholar
10.Liu, M., “Puma 560 robot arm analogue servo system parameter identification” Tech. Rep. ASR-91–1 (Dept. Mechanical and Manufacturing Engineering, University of Melbourne, 1991).Google Scholar
11.Izaguirre, A., Hashimoto, M., Paul, R. and Hayward, V., “A new computational structure for real time dynamics” Tech. Rep. MS-CIS-87–107 (University of Pennsylvania, 1987).Google Scholar
12.An, C.H., “Trajectory and force control of a direct drive arm” Tech. Rep. 912 (MIT Artificial Intelligence Laboratory, 1986).Google Scholar
13.Khosla, P., “Estimation of robot dynamics parameters: Theory and applicationIEEE Trans. Robot. Autom. 3, 3541 (1988).Google Scholar
14.Khosla, P. and Kanade, T., “An algorithm to estimate the manipulator dynamics parametersIEEE Trans. Robot. Autom. 2, 127135 (1987).Google Scholar
15.Seeger, G. and Leonhard, W., “Estimation of rigid body models for a six-axis manipulator with geared electric drives” Proc. IEEE Int. Conf. Robotics and Automation(1989) pp. 16901695.Google Scholar
16.Mayeda, H., Maruyama, M., Yoshida, K., Ikeda, N. and Kuwaki, O., “Experimental examination of the identification methods for an industrial robot manipulator” In: (Chatila, R. & Hirzinger, G.) Experimental Robotics II (Springer-Verlag, London, 1993) pp. 546560.CrossRefGoogle Scholar
17.An, C.H., Atkeson, C.G., Griffiths, J.D., and Hollerbach, J.M., Model based control of a robot manipulator (MIT Press, Cambridge, Mass, 1989).Google Scholar
18.Leahy, M., Bossert, D. and Whalen, P., “Robot model-based control: An experimental case study” Proc. IEEE Int. Conf. Robotics and Automation(1990) pp. 19821987.Google Scholar
19.Hartenberg, R.S. and Denavit, J., “A kinematic notation for lower pair mechanisms based on matricesJ. Applied Mechanics 77, 215221 (1955).Google Scholar
20.Craig, J.J., Introduction to Robotics (Addison Wesley, Reading, Mass., 1986).Google Scholar
21.Paul, R.P., Robot Manipulators: Mathematics, Programming, and Control Massachusetts (MIT Press, Cambridge, Mass., 1981).Google Scholar
22.Corke, P. and Armstrong-Heélouvry, B., “A search for consensus among model parameters reported for the PUMA 560 robot” Proc. IEEE Int. Conf. Robotics and Automation(1994) pp. 16081613.Google Scholar
23.Armstrong-Hèlouvry, B., Control of Machines with Friction (Kluwer, Amsterdam, 1991).CrossRefGoogle Scholar
24.Armstrong-Hèlouvry, B., “Stick slip and control in low-speed motionIEEE Trans. Autom. Control 38, No. 10, 14831496 (1993).Google Scholar
25.Hayward, V. and Paul, R.P., “Robot manipulator control under UNIX–RCCL: a Robot Control C LibraryInt. J. Robot. Res. 5, No. 4, 94111 (1986).CrossRefGoogle Scholar
26.Armstrong, B., “Dynamics for Robot Control: Friction Modelling and ensuring Excitation During Parameter Identification PhD Thesis (Stanford University, 1988).Google Scholar