Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T14:52:33.773Z Has data issue: false hasContentIssue false

Modeling and gait selection of passivity-based seven-link bipeds with dynamic series of walking phases

Published online by Cambridge University Press:  26 April 2011

Yan Huang
Affiliation:
Intelligent Control Laboratory, College of Engineering, Peking University, Beijing 100871, China
Qining Wang*
Affiliation:
Intelligent Control Laboratory, College of Engineering, Peking University, Beijing 100871, China
Baojun Chen
Affiliation:
Intelligent Control Laboratory, College of Engineering, Peking University, Beijing 100871, China
Guangming Xie
Affiliation:
Intelligent Control Laboratory, College of Engineering, Peking University, Beijing 100871, China
Long Wang
Affiliation:
Intelligent Control Laboratory, College of Engineering, Peking University, Beijing 100871, China
*
*Corresponding author. E-mail: qiningwang@pku.edu.cn

Summary

This paper presents a seven-link dynamic walking model that is more close to human beings than other passivity-based dynamic walking models. We add hip actuation, upper body, flat feet, and ankle joints with torsional springs to the model. Walking sequence of flat-feet walkers has several substreams, which forms bipedal walking with dynamic series of phases. We investigate the effects of ankle stiffness on gait selection and evaluate different gaits in walking velocity, efficiency, and stability. Experimental results indicate that ankle stiffness plays different roles in different gaits and the gaits, which are more close to human walking with moderate speed, achieve better motion characteristics.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hirai, K., Hirose, M., Haikawa, Y. and Takenaka, T., “The Development of the Honda Humanoid Robot,” Proceedings of the IEEE International Conference on Robotics and Automation Proceedings, Leuven, Belgium (1998) pp. 13211326.Google Scholar
2.Vukobratovic, M., Frank, A. and Juricic, D., “On the stability of biped locomotion,” IEEE Trans. Biomed. Eng. 17 (1), 2536 (1970).CrossRefGoogle ScholarPubMed
3.McGeer, T., “Passive dynamic walking,” Int. J. Robot. Res. 9, 6882 (1990).CrossRefGoogle Scholar
4.Collins, S., Wisse, M. and Ruina, A., “A three-dimensional passive-dynamic walking robot with two legs and knees,” Int. J. Robot. Res. 20, 607615 (2001).CrossRefGoogle Scholar
5.Suzuki, S., Furuta, K. and Hatakeyama, S., “Passive walking towards running,” Math. Comput. Modelling Dyn. Syst. 11 (4), 371395 (2005).CrossRefGoogle Scholar
6.Collins, S., Ruina, A., Tedrake, R. and Wisse, M., “Efficient bipedal robots based on passive-dynamic walkers,” Science 307, 10821085 (2005).CrossRefGoogle ScholarPubMed
7.Wisse, M., Hobbelen, D. G. E. and Schwab, A. L., “Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism,” IEEE Trans. Robot. 23 (1), 112123 (2007).CrossRefGoogle Scholar
8.Dertien, E., “Dynamic walking with dribbel,” IEEE Robot. Autom. Mag. 13 (3), 118122 (2006).CrossRefGoogle Scholar
9.Harata, Y., Asano, F., Luo, Z., Taji, K. and Uno, Y., “Biped gait generation based on parametric excitation by knee-joint actuation,” Robotica 27, 10631073 (2009).CrossRefGoogle Scholar
10.Garcia, M., Chatterjee, A., Ruina, A. and Coleman, M., “The simplest walking model: Stability, complexity, and scaling,” ASME J. Biomech. Eng. 120, 281288 (1998).CrossRefGoogle ScholarPubMed
11.Kuo, A. D., “Energetics of actively powered locomotion using the simplest walking model,” ASME J. Biomech. Eng. 124, 113120 (2002).CrossRefGoogle ScholarPubMed
12.Wisse, M., Schwab, A. L. and Van der Helm, F. C. T., “Passive dynamic walking model with upper body,” Robotica 22, 681688 (2004).CrossRefGoogle Scholar
13.Mochon, S. and McMahon, T. A., “Ballistic walking,” J. Biomech. 13 (1), 4957 (1980).CrossRefGoogle ScholarPubMed
14.Ruina, A., Bertram, J. E. A. and Srinivasan, M., “A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition,” J. Theor. Biol. 237 (2), 170192 (2005).CrossRefGoogle ScholarPubMed
15.Kwan, M. and Hubbard, M., “Optimal foot shape for a passive dynamic biped,” J. Theor. Biol. 248, 331339 (2007).CrossRefGoogle ScholarPubMed
16.Wang, Q., Huang, Y. and Wang, L., “Passive dynamic walking with flat feet and ankle compliance,” Robotica 28, 413425 (2010).CrossRefGoogle Scholar
17.Wang, Q., Huang, Y., Zhu, J., Wang, L. and Lv, D., “Effects of foot shape on energetic efficiency and dynamic stability of passive dynamic biped with upper body,” Int. J. Human. Robot. 7 (2), 295313 (2010).CrossRefGoogle Scholar
18.Wisse, M., Hobbelen, D. G. E., Rotteveel, R. J. J., S. O. Anderson and Zeglin, G. J., “Ankle Springs Instead of Arc-Shaped Feet for Passive Dynamic Walkers,” Proceedings of the 2006 IEEE International Conference on Humanoids, Genova, Italy (2006) pp. 110116.Google Scholar
19.Hobbelen, D. G. E. and Wisse, M., “Ankle Joints and Flat Feet in Dynamic Walking,” Proceedings of the International Conference on Climbing and Walking Robots, Madrid, Spain (2004) pp. 787800.Google Scholar
20.Hobbelen, D. G. E. and Wisse, M., “Ankle actuation for limit cycle walkers,” Int. J. Robot. Res. 27 (6), 709735 (2008).CrossRefGoogle Scholar
21.Au, S. K., Weber, J. and Herr, H., “Powered ankle-foot prosthesis improves walking metabolic economy,” IEEE Trans. Robot. 25 (1), 5166 (2009).CrossRefGoogle Scholar
22.Weiss, P. L., Kearney, R. E. and Hunter, I. W., “Position dependence of ankle joint dynamicsłi. passive mechanics,” J. Biomech. 19 (9), 727735 (1986).CrossRefGoogle ScholarPubMed
23.Weiss, P. L., Kearney, R. E. and Hunter, I. W., “Position dependence of ankle joint dynamicsłii. active mechanics,” J. Biomech. 19 (9), 737751 (1986).CrossRefGoogle ScholarPubMed
24.Frigo, C., Crenna, P. and Jensen, L. M., “Moment-angle relationship at lower limb joints during human walking at different velocities,” J. Electromyogr. Kines. 6 (3), 177190 (1996).CrossRefGoogle ScholarPubMed
25.Sinkjaer, T., Toft, E., Andreassen, S. and Hornemann, B. C., “Muscle stiffness in human ankle dorsiflexors: Intrinsic and reflex components,” J. Neurophysiol. 60 (3), 11101120 (1988).CrossRefGoogle ScholarPubMed
26.Geyer, H., Seyfarth, A. and Blickhan, R., “Compliant leg behaviour explains basic dynamics of walking and running,” Proc. R. Soc. B 273, 28612867 (2006).CrossRefGoogle ScholarPubMed
27.Hunter, I. W. and Kearney, R. E., “Dynamics of human ankle stiffness: Variation with mean ankle torque,” J. Biomech. 15 (10), 747752 (1982).CrossRefGoogle ScholarPubMed