Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T05:10:40.726Z Has data issue: false hasContentIssue false

A novel soft-rigid wheeled crawling robot with high payload and passing capability

Published online by Cambridge University Press:  08 June 2022

Jiangming Jia
Affiliation:
Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, 310018Hangzhou, PR China
Peilin Cheng
Affiliation:
Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, 310018Hangzhou, PR China
Yuze Ye
Affiliation:
Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, 310018Hangzhou, PR China
Qizhi Xie
Affiliation:
School of Mechanical and Electrical Engineering, Xuzhou University of Technology, 221018 Xuzhou, PR China
Chuanyu Wu*
Affiliation:
Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, 310018Hangzhou, PR China
*
*Corresponding author. E-mail: cywu@zstu.edu.cn

Abstract

Soft crawling robots have been significantly studied in recent decades. However, moving in amphibious environment, high payload capability, and passing through complex ground have always been challenges for soft crawling robots. For these problems, this article presents an amphibious soft-rigid wheeled crawling robot (SRWCR) consists of a soft-rigid body actuated by two soft pneumatic actuators (SPAs), four wheels, and four annular soft bladders (ASBs) as brakes. By programming the actuation sequences of the two SPAs and four ASBs, SRWCR can achieve two basic modes of locomotion: linear motion and turning. Based on the energy conservation law, we have developed analytical models to interpret the static actuation performance of SPA, including linear and bending deformations. Furthermore, with the help of fast response and waterproof of SPA and ASB, SRWCR can achieve a linear speed of 14.97 mm/s, a turning speed of 5.63°/s, and an underwater locomotion speed of 13 mm/s, which demonstrates the excellent locomotion performance of SRWCR in amphibious environment. In addition, SRWCR can also achieve multiple impressive functions, including carrying a payload of 2 kg at the moving speed of 11.18 mm/s, passing through various complex ground such as the grass ground and sand ground, and so on, obstacle navigation in confined space. Compared with the existing soft crawling robots, with the help of the soft-rigid body and wheeled structure, SRWCR has the best payload and passing capability, which indicates the potential advantage of SRWCR in the design of functional robots.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Davarzani, S., Ahmadi-Pajouh, M. A. and Ghafarirad, H., “Design of sensing system for experimental modeling of soft actuator applied for finger rehabilitation,” Robotica, 121 (2021).CrossRefGoogle Scholar
Cianchetti, M., Ranzani, T., Gerboni, G., Nanayakkara, T., Althoefer, K., Dasgupta, P. and Menciassi, A., “Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: The STIFF-FLOP approach,” Soft Robot. 1(2), 122131 (2014).CrossRefGoogle Scholar
Galloway, K. C., Becker, K. P., Phillips, B., Kirby, J., Licht, S., Tchernov, D., Wood, R. J. and Gruber, D. F., “Soft robotic grippers for biological sampling on deep reefs,” Soft Robot. 3(1), 2333 (2016).CrossRefGoogle ScholarPubMed
Wang, Z., Kanegae, R. and Hirai, S., “Circular shell gripper for handling food products,Soft Robot. 8(5), 542554 (2020).CrossRefGoogle Scholar
Greer, J. D., Morimoto, T. K., Okamura, A. M. and Hawkes, E. W., “A soft, steerable continuum robot that grows via tip extension,” Soft Robot. 6(1), 95108 (2019).CrossRefGoogle ScholarPubMed
Majidi, C., Shepherd, R. F., Kramer, R. K., Whitesides, G. M. and Wood, R. J., “Influence of surface traction on soft robot undulation,” Int. J. Robot. Res. 32(13), 15771584 (2013).CrossRefGoogle Scholar
Zhu, N., Zang, H., Liao, B., Qi, H., Yang, Z., Chen, M., Lang, X. and Wang, Y., “A quadruped soft robot for climbing parallel rods,” Robotica 39(4), 686698 (2021).CrossRefGoogle Scholar
Tang, Z., Lu, J., Wang, Z., Ma, G., Chen, W. and Feng, H., “Development of a new multi-cavity pneumatic-driven earthworm-like soft robot,” Robotica 38(12), 22902304 (2020).CrossRefGoogle Scholar
Xie, Z., Domel, A. G., An, N., Green, C., Gong, Z., Wang, T., Knubben, E. M., Weaver, J. C., Bertoldi, K. and Wen, L., “Octopus arm-inspired tapered soft actuators with suckers for improved grasping,” Soft Robot. 7(5), 639648 (2020).CrossRefGoogle ScholarPubMed
Sakuhara, Y., Shimizu, H. and Ito, K., “Climbing Soft Robot Inspired by Octopus,” IEEE 10th International Conference on Intelligent Systems (IS) (2020) pp. 463468.Google Scholar
Zou, J., Lin, Y., Ji, C. and Yang, H., “A reconfigurable omnidirectional soft robot based on caterpillar locomotion,” Soft Robot. 5(2), 164174 (2018).CrossRefGoogle ScholarPubMed
Chen, Y., Hu, B., Zou, J., Zhang, W., Wang, D. and Jin, G., “Design and fabrication of a multi-motion mode soft crawling robot,” J. Bionic Eng. 17(5), 932943 (2020).CrossRefGoogle Scholar
Umedachi, T., Shimizu, M. and Kawahara, Y., “Caterpillar-inspired crawling robot using both compression and bending deformations,” IEEE Robot. Autom. Let. 4(2), 670676 (2019).CrossRefGoogle Scholar
Hamidi, A., Almubarak, Y., Rupawat, Y. M., Warren, J. and Tadesse, Y., “Poly-Saora robotic jellyfish: Swimming underwater by twisted and coiled polymer actuators,Smart Mater. Struct. 29(4), 045039 (2020).CrossRefGoogle Scholar
Frame, J., Lopez, N., Curet, O. and Engeberg, E. D., “Thrust force characterization of free-swimming soft robotic jellyfish,” Bioinspir. Biomim. 13(6), 064001 (2018).CrossRefGoogle ScholarPubMed
Almubarak, Y., Punnoose, M., Maly, N. X., Hamidi, A. and Tadesse, Y., “KryptoJelly: A jellyfish robot with confined, adjustable pre-stress, and easily replaceable shape memory alloy NiTi actuators,Smart Mater. Struct. 29(7), 075011 (2020).CrossRefGoogle Scholar
Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., Chen, X., Wang, M. and Whitesides, G. M., “Multigait soft robot,” P. Natl. Acad. Sci. 108(51), 2040020403 (2011).CrossRefGoogle ScholarPubMed
Tolley, M. T., Shepherd, R. F., Mosadegh, B., Galloway, K. C., Wehner, M., Karpelson, M., Wood, R. J. and Whitesides, G. M., “A resilient, untethered soft robot,” Soft Robot. 1(3), 213223 (2014).CrossRefGoogle Scholar
Qin, L., Liang, X., Huang, H., Chui, C. K., Yeow, R. C.-H. and Zhu, J., “A versatile soft crawling robot with rapid locomotion,” Soft Robot. 6(4), 455467 (2019).CrossRefGoogle ScholarPubMed
Shakiba, S., Ayati, M. and Yousefi-Koma, A., “Development of hybrid Prandtl–Ishlinskii and constitutive models for hysteresis of shape-memory-alloy-driven actuators,” Robotica 39(8), 13901404 (2021).CrossRefGoogle Scholar
Nguyen, K. T., Ko, S. Y., Park, J.-O. and Park, S., “Terrestrial walking robot with 2DoF Ionic Polymer-Metal Composite (IPMC) legs”, IEEE/ASME T. Mech. 20(6), 29622972 (2015).CrossRefGoogle Scholar
Hua, D., X.-h. Liu, S. Sun, M. Á. Sotelo, Z. Li and W. Li, “A magnetorheological fluid-filled soft crawling robot with magnetic actuation,” IEEE/ASME T. Mech 25(6), 2700–2710 (2020).CrossRefGoogle Scholar
Cao, J., Qin, L., Liu, J., Ren, Q., Foo, C. C., Wang, H., Lee, H. P. and Zhu, J., “Untethered soft robot capable of stable locomotion using soft electrostatic actuators,Extreme Mech. Lett. 21(5), 916 (2018).CrossRefGoogle Scholar
Li, T., Zou, Z., Mao, G., Yang, X., Liang, Y., Li, C., Qu, S., Suo, Z. and Yang, W., “Agile and resilient insect-scale robot,” Soft Robot. 6(1), 133141 (2019).CrossRefGoogle ScholarPubMed
Lu, X., Wang, K. and Hu, T., “Development of an annelid-like peristaltic crawling soft robot using dielectric elastomer actuators,” Bioinspir. Biomim. 15(4), 046012 (2020).CrossRefGoogle ScholarPubMed
Guo, X.-Y., Li, W.-B., Gao, Q.-H., Yan, H., Fei, Y.-Q. and Zhang, W.-M., “Self-locking mechanism for variable stiffness rigid–soft gripper,” Smart Mater. Struct. 29(3), 035033 (2020).CrossRefGoogle Scholar
Su, Y., Fang, Z., Zhu, W., Sun, X., Zhu, Y., Wang, H., Tang, K., Huang, H., Liu, S. and Wang, Z., “A high-payload proprioceptive hybrid robotic gripper with soft origamic actuators,” IEEE Robot. Autom. Let. 5(2), 30033010 (2020).CrossRefGoogle Scholar
Li, W., Li, Z., Liu, Y., Ding, L., Wang, J., Gao, H. and Deng, Z., “Semi-Autonomous bilateral teleoperation of six-wheeled mobile robot on soft terrains,Mech. Syst. Signal Pr. 133(9), 106234 (2019).CrossRefGoogle Scholar
Almusa, A., Galeza, R., Wang, M. and Majidi, C., “Compliance-Tuning Soft Inflatable Wheels for Robot Mobility on Various Terrains,” 3rd IEEE International Conference on Soft Robotics (RoboSoft) (2020) pp. 558563.Google Scholar
Yao, J., “Design and motion analysis of a wheel-walking bionic soft robot,J. Mech. Eng. 55(5), 27 (2019).CrossRefGoogle Scholar
Shen, Z., Zhong, H., Xu, E., Zhang, R., Yip, K. C., Chan, L. L., Chan, L. L., Pan, J., Wang, W. and Wang, Z., “An underwater robotic manipulator with soft bladders and compact depth-independent actuation,Soft Robot. 7(5), 535549 (2020).CrossRefGoogle Scholar
Kurumaya, S., Phillips, B. T., Becker, K. P., Rosen, M. H., Gruber, D. F., Galloway, K. C., Suzumori, K. and Wood, R. J., “A modular soft robotic wrist for underwater manipulation,” Soft Robot. 5(4), 399409 (2018).CrossRefGoogle ScholarPubMed
Feng, H., Sun, Y., Todd, P. A. and Lee, H. P., “Body wave generation for anguilliform locomotion using a fiber-reinforced soft fluidic elastomer actuator array toward the development of the eel-inspired underwater soft robot,” Soft Robot. 7(2), 233250 (2019).CrossRefGoogle ScholarPubMed
Cheng, P., Jia, J., Ye, Y. and Wu, C., “Modeling of a soft-rigid gripper actuated by a linear-extension soft pneumatic actuator,Sensors (Basel) 21(2), 493 (2021).CrossRefGoogle Scholar
Marechal, L., Balland, P., Lindenroth, L., Petrou, F., Kontovounisios, C. and Bello, F., “Toward a common framework and database of materials for soft robotics,” Soft Robot. 8(3), 284297 (2021).CrossRefGoogle Scholar
Dong, X., Tang, C., Jiang, S., Shao, Q. and Zhao, H., “Increasing the payload and terrain adaptivity of an untethered crawling robot via soft-rigid coupled linear actuators,” IEEE Robot. Autom. Let. 6(2), 24052412 (2021).CrossRefGoogle Scholar
Jiang, F., Zhang, Z., Wang, X., Cheng, G., Zhang, Z. and Ding, J., “Pneumatically actuated self-healing bionic crawling soft robot,” J. Intell. Robot. Syst. 100(2), 445454 (2020).CrossRefGoogle Scholar
Ge, J. Z., Calderon, A. A., Chang, L. and Perez-Arancibia, N. O., “An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion,” Bioinspir. Biomim. 14(3), 036004 (2019).CrossRefGoogle ScholarPubMed
Tang, X., Li, K., Liu, Y., Zhou, D. and Zhao, J., “A soft crawling robot driven by single twisted and coiled actuator,Sensor. Actuat. A Phys. 291(6), 8086 (2019).CrossRefGoogle Scholar
Must, I., Kaasik, F., Põldsalu, I., Mihkels, L., Johanson, U., Punning, A. and Aabloo, A., “Ionic and Capacitive Artificial Muscle for Biomimetic Soft Robotics,” Adv. Eng. Mater. 17(1), 8494 (2015).CrossRefGoogle Scholar
Joyee, E. B. and Pan, Y., “A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation,” Soft Robot. 6(3), 333345 (2019).CrossRefGoogle ScholarPubMed
Tang, Y., Zhang, Q., Lin, G. and Yin, J., “Switchable adhesion actuator for amphibious climbing soft robot,” Soft Robot. 5(5), 592600 (2018).CrossRefGoogle ScholarPubMed
Supplementary material: File

Jia et al. supplementary material

Jia et al. supplementary material

Download Jia et al. supplementary material(File)
File 25.1 MB