Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T15:37:26.712Z Has data issue: false hasContentIssue false

Optimal trajectory planning for a redundant mobile manipulator with non-holonomic constraints performing push–pull tasks

Published online by Cambridge University Press:  01 May 2008

José P. Puga*
Affiliation:
P. Universidad Católica de Chile, Dpto. de Ingeniería Mecánica y Metalúrgica. Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.
Luciano E. Chiang
Affiliation:
P. Universidad Católica de Chile, Dpto. de Ingeniería Mecánica y Metalúrgica. Av. Vicuña Mackenna 4860, Macul, Santiago, Chile.
*
*Corresponding author. E-mail: jppuga@gmail.com

Summary

This work presents a method to generate optimal trajectories for redundant mobile manipulators based on a weighted function that considers simultaneously joint torques, manipulability and preferred joint angle references. This method is applicable to a group of tasks, commonly known as push–pull tasks, in which a redundant mobile manipulator subject to non-holonomic constraints moves slowly while exerting a set of forces against the environment. In practice, this occurs when the manipulator is pulling against an object such as when opening a door or unearthing a buried object. Torque is computed in a quasi-static manner, mainly taking into consideration the effect of multiple external forces while neglecting dynamic effects. The formulation incorporates a criterion for optimizing a starting configuration, and special considerations are made to account for non-holonomic constraints. The application to an existing mobile manipulator is described.

Type
Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shugen, Ma, “A new formulation technique for local torque optimization of redundant manipulators,” Trans. Ind. Elec. 43 (4), 462468 (1996).CrossRefGoogle Scholar
2.Cheng, Fan-Tian, Sheu, Rong-Jing and Chen, Tsing-Hua, “The improved compact QP method for resolving manipulator redundancy,” IEEE Trans. Syst. Man Cybern. 25 (11), 15211530 (1995).CrossRefGoogle Scholar
3.Nedungadi, A. and Kazerouinian, K., “A local solution with global characteristics for the joint toque optimization of a redundant manipulator,” J. Rob. Syst. 6 (5), 631654 (1989).CrossRefGoogle Scholar
4.Lee, Heow Pueh, “Motions with minimal joint torques for redundant manipulators,” J. Mech. Des. 115 (3), 599603 (1993).Google Scholar
5.Yoshikawa, T., “Manipulability of robot mechanisms,” Int. J. Robot. Res. 4 (2), 39 (1985).CrossRefGoogle Scholar
6.Bowling, A. and Khatib, O., “The dynamic capability equations: a new tool for analyzing robotic manipulator performance,” IEEE Trans. Robot. 21 (1), 115123 (2005).CrossRefGoogle Scholar
7.Hollerbach, J. M. and Suh, K. C., “Redundancy resolution of manipulators through torque optimization,” IEEE J. Robot. Autom. 3 (4), 308315 (1987).CrossRefGoogle Scholar
8.Sekhavat, S., Svestka, P., Laumond, J. P. and Overmars, M. H., “Multilevel path Planing for nonholonomic robots using semiholonomic subsystems,” Int. J. Robot. Res. 17 (8), 840857 (1998).CrossRefGoogle Scholar
9.Laumond, J. P., Jacobs, P. E., Taïx, M., and Murray, R. M., “A motion planner for nonholonomic mobile robots,” IEEE Trans. Robot. Autom. 10, 577593 (1994).CrossRefGoogle Scholar
10.Carriker, W. F., Khosla, P. K. and Krogh, B. H., “Path planning for mobile manipulators for multiple task exceution,” IEEE Trans. Robot. 7 (3), 403408 (1991).CrossRefGoogle Scholar
11.Pin, F. G., Culioli, J. C. and Reister, D. B., “Using minimax approaches to plan optimal task commutation configurations for combined mobile platform-manipulator system,” IEEE Trans. Robot. Autom. 10 (1), 4454 (1994).CrossRefGoogle Scholar
12.Lee, J. K., Kim, S. H. and Cho, H. S., “Motion planing for a mobile manipulator to execute a multiple point-to-point task,” Proceedings IEEE/RSJ International Conference Intelligent Robots and Systems (1996) pp. 737–742.Google Scholar
13.Seraji, H., “A unified approach to motion control of mobile manipulators,” Int. J. Robot. Res. 17 (2), 107118 (1998).CrossRefGoogle Scholar
14.Perrier, C., Dauchez, P. and Pierrot, F., “A global approach for motion generation of non-holonomic mobile manipulators,” IEEE Proceedings IEEE International Conference on Robotics and Automation (1998) pp. 2971–2976.Google Scholar
15.Foulon, G., Fourquet, J. Y. and Reanud, M.. “Planning point to point paths for nonholomic mobile manipulators,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (1998) pp. 374–379.Google Scholar
16.Tanner, H. G. and Kyriakopoulos, K. J., “Nonholonomic motion planning for mobile manipulators,” Proceedings of IEEE International Conference on Robotics and Automation (2000) pp. 1233–1238.Google Scholar
17.Desai, J. P. and Kumar, V. “Nonholonomic motion planning for mobile manipulators,” Proceedings of IEEE International Conference Robotics and Automation (1997) pp. 3409–3414.Google Scholar
18.Kurisu, M. and Yoshikawa, T., “Trajectory planning and dynamic control of a mobile manipulators,” Trans Jap. Soc. Mech. Eng. 62 (596-C), 242248 (1996).Google Scholar
19.Mohri, A., Furuno, S. and Yamamoto, M., “Trajectory planning of mobile manipulator with end-effectors's Specified path,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (2001) pp. 2264–2269.Google Scholar
20.Padois, V., Fourquet, J. Y. and Chiron, P., “Kinematic and dynamic model-based control of wheeled mobile manipulators: A unified framework for reactive approaches,” Robotica 25 (2), 157173 (2007).CrossRefGoogle Scholar
21.Liegeois, A., “Automatic supervisory control of the configuration and behavior of multibody mechanisms,” IEEE Trans. Syst. Man Cybern. SMC-7, 868–871 (1977).CrossRefGoogle Scholar
22.Puga, J. P. and Chiang, L., “Desarrollo de un manipulador móvil redundante. Aspectos de diseño mecánico, control automático y configuración óptima,” XII Congreso Chileno de Ingeniería Mecánica, Curicó, Chile (Nov. 2006).Google Scholar
23.Nakamura, Y., Advanced Robotics: Redundancy and Optimization (Addison-Wesley Publishing Company, 1991).Boston, USA.Google Scholar
24.Strang, G., Introduction to Linear Algebra 3rd ed. (Wellesley-Cambridge Press, Massachussetts 1998).Google Scholar
25.Albert, A. E., Regression and the Moore–Penrose pseudoinverse (New York, Academic Press, 1972).Google Scholar
26.Whitney, D. E., “Resolved motion rate control of manipulators and human prostheses,” IEEE Trans. Man-Mac. Syst. MMS-10, 47–53 (1969).CrossRefGoogle Scholar
27.Whitney, D. E., “The mathematics of coordinated control of prosthetic arms and manipulators”, ASME J. Dyn. Syst. Meas. Control pp. 303–309 (1972).CrossRefGoogle Scholar
28.Chiang, L., Análisis Dinámico de Sistemas Mecánicos (Ediciones AlfaOmega, Ciudad de México, México, 1999).Google Scholar
29.White, G. D., Bhatt, R. M. and Krovi, V. N., “Dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator,” Robotica 25 (2), 147156 (2007).CrossRefGoogle Scholar
30.Sekhavat, S., Svestka, P., Laumond, J. P. and Overmars, M. H., “Probabilistic path planning for tractor trailer robots,” Technical Report 96007, LAAS/CNRS (Toulouse, France, 1996).Google Scholar