Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-16T21:50:29.276Z Has data issue: false hasContentIssue false

Parametric dynamic analysis of walking within a cable-based gait trainer

Published online by Cambridge University Press:  15 August 2018

Houssein Lamine*
Affiliation:
Mechanical Laboratory of Sousse (LMS), National Engineering School of Sousse, University of Sousse, Sousse 4000, Tunisia E-mail: lotfi.romdhane@gmail.com, sami.bennour@gmail.com
Lotfi Romdhane
Affiliation:
Mechanical Laboratory of Sousse (LMS), National Engineering School of Sousse, University of Sousse, Sousse 4000, Tunisia E-mail: lotfi.romdhane@gmail.com, sami.bennour@gmail.com Mechanical Engineering Department, American University of Sharjah, PO Box 26666, Sharjah, United Arab Emirates
Sami Bennour
Affiliation:
Mechanical Laboratory of Sousse (LMS), National Engineering School of Sousse, University of Sousse, Sousse 4000, Tunisia E-mail: lotfi.romdhane@gmail.com, sami.bennour@gmail.com
*
*Corresponding author. E-mail: houssein.lamine@gmail.com

Summary

In this paper, a parametric analysis of the inverse dynamics of an upright partially unloaded walking is performed. This motion is produced through a gait-training machine emulating the over-ground walking using a body weight support mechanism and a cable-driven robot. The input motion is the kinematics of a normal gait, and the ultimate output result is the required tensions to be generated by the cable robot in order to drive the lower limb. The dynamic analysis is carried out based on the Newton–Euler approach. A Matlab Simscape model is also built to validate the analytical results. The obtained dynamic model is used to investigate the effect of the variation of the gait simulation parameters on the actuation wrench and the cable tensions. The obtained results could be used to determine the optimal design of the gait trainer actuators and they are useful in estimating optimal gait training parameters.

Type
Articles
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eltoukhy, M., Oh, J., Kuenze, C. and Signorile, J., “Improved kinect-based spatiotemporal and kinematic treadmill gait assessment,” Gait Posture 51, 7783 (2017).CrossRefGoogle ScholarPubMed
Teachasrisaksakul, K., Zhang, Z., Yang, G.-Z. and Lo, B., “Imitation of dynamic walking with BSN for humanoid robot,” IEEE J. Biomed. Heal. Informatics 19 (3), 794802 (2015).Google ScholarPubMed
Rajagopal, A., Dembia, C. L., DeMers, M. S., Delp, D. D., Hicks, J. L. and Delp, S. L., “Full-body musculoskeletal model for muscle-driven simulation of human gait,” IEEE Trans. Biomed. Eng. 63 (10), 20682079 (2016).CrossRefGoogle ScholarPubMed
Shourijeh, M. S. and McPhee, J., “Foot–ground contact modeling within human gait simulations: From Kelvin–Voigt to hyper-volumetric models,” Multibody Syst. Dyn. 35 (4), 393407 (2015).CrossRefGoogle Scholar
Delp, S. L. et al., “OpenSim: Open-source software to create and analyze dynamic simulations of movement,” IEEE Trans. Biomed. Eng. 54 (11), 19401950 (2007).CrossRefGoogle Scholar
Winter, D. A., Biomechanics and Motor Control of Human Movement, 4th ed. (John Wiley & Sons, Hoboken, New Jersey, USA, 2009).CrossRefGoogle Scholar
Vaughan, C. L., Davis, B. L. and Jeremy, C. O., Dynamics of Human Gait, 2nd ed. (Kiboho Publishers, Cape Town, South Africa, 1999).Google Scholar
Wojtusch, J. and Stryk, O. von, “HuMoD-A Versatile and Open Database for the Investigation, Modeling and Simulation of Human Motion Dynamics on Actuation Level,” Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (2015) pp. 74–79.Google Scholar
Dijkstra, E. J. and Gutierrez-Farewik, E. M., “Computation of ground reaction force using zero moment point,” J. Biomech. 48 (14), 37763781 (2015).CrossRefGoogle ScholarPubMed
Springer, S. and Seligmann, G. Yogev, “Validity of the kinect for gait assessment: A focused review,” Sensors 16 (2), 194 (2016).CrossRefGoogle ScholarPubMed
do Rosário, J. L. P., “Biomechanical assessment of human posture: A literature review,” J. Bodyw. Mov. Ther. 18 (3), 368373 (2014).CrossRefGoogle Scholar
Dolatabadi, E., Taati, B. and Mihailidis, A., “Concurrent validity of the microsoft kinect for windows v2 for measuring spatiotemporal gait parameters,” Med. Eng. Phys. 38 (9), 952958 (2016).CrossRefGoogle ScholarPubMed
Zajac, F. E., Neptune, R. R. and Kautz, S. A., “Biomechanics and muscle coordination of human walking: Part I: Introduction to concepts, power transfer, dynamics and simulations,” Gait Posture 16 (3), 215232 (2002).CrossRefGoogle ScholarPubMed
Lamine, H., Laribi, M. Amine, Bennour, S., Romdhane, L. and Zeghloul, S., “Design study of a cable-based gait training machine,” J. Bionic Eng. 14 (2), 232244 (2017).CrossRefGoogle Scholar
Benito-Penalva, J. et al., “Gait training in human spinal cord injury using electromechanical systems: Effect of device type and patient characteristics,” Arch. Phys. Med. Rehabil. 93 (3), 404412 (2012).CrossRefGoogle ScholarPubMed
Racic, V., Pavic, A. and Brownjohn, J. M. W., “Experimental identification and analytical modelling of human walking forces: Literature review,” J. Sound Vib. 326 (1), 149 (2009).CrossRefGoogle Scholar
Koopman, B., Grootenboer, H. J. and De Jongh, H. J., “An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking,” J. Biomech. 28 (11), 13691376 (1995).CrossRefGoogle ScholarPubMed
Ren, L., Jones, R. K. and Howard, D., “Whole body inverse dynamics over a complete gait cycle based only on measured kinematics,” J. Biomech. 41 (12), 27502759 (2008).CrossRefGoogle Scholar
Xiang, Y., Arora, J. S., Rahmatalla, S. and Abdel-Malek, K., “Optimization-based dynamic human walking prediction: One step formulation,” Int. J. Numer. Methods Eng. 79 (6), 667695 (2009).CrossRefGoogle Scholar
Fluit, R., Andersen, M. S., Kolk, S., Verdonschot, N. and Koopman, H. F. J. M., “Prediction of ground reaction forces and moments during various activities of daily living,” J. Biomech. 47 (10), 23212329 (2014).CrossRefGoogle ScholarPubMed
Jung, Y., Jung, M., Ryu, J., Yoon, S., Park, S.-K. and Koo, S., “Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running,” Gait Posture 45, 6268 (2016).CrossRefGoogle ScholarPubMed
Tözeren, A., Human Body Dynamics: Classical Mechanics and Human Movement (Springer-Verlag New York, New York, USA, 2000).Google Scholar
Frey, M., Colombo, G., Vaglio, M., Bucher, R., Jorg, M. and Riener, R., “A novel mechatronic body weight support system,” Neural Syst. Rehabil. Eng. IEEE Trans. 14 (3), 311321 (2006).CrossRefGoogle ScholarPubMed
Hidler, J., Wisman, W. and Neckel, N., “Kinematic trajectories while walking within the Lokomat robotic gait-orthosis,” Clin. Biomech. 23 (10), 12511259 (2008).CrossRefGoogle ScholarPubMed
Craig, J. J., Introduction to Robotics Mechanics and Control, 3rd ed. (Pearson Education International, Upper Saddle River, 2005).Google Scholar
Pham, C. B., Yeo, S. H., Yang, G. and Chen, I.-M., “Workspace analysis of fully restrained cable-driven manipulators,” Rob. Auton. Syst. 57 (9), 901912 (2009).CrossRefGoogle Scholar
Lamine, H., Bennour, S. and Romdhane, L., “Design of cable-driven parallel manipulators for a specific workspace using interval analysis,” Adv. Robot. 30 (9), 585594 (2016).CrossRefGoogle Scholar
Williams, R. L. and Gallina, P., “Planar cable-direct-driven robots: Design for wrench exertion,” J. Intell. Robot. Syst. 35 (2), 203219 (2002).CrossRefGoogle Scholar
Van Kammen, K., Boonstra, A., Reinders-Messelink, H. and den Otter, R., “The combined effects of body weight support and gait speed on gait related muscle activity: A comparison between walking in the Lokomat exoskeleton and regular treadmill walking,” PLoS One 9 (9), e107323 (2014).CrossRefGoogle ScholarPubMed
Watanabe, S. and Someya, F., “Effect of body weight-supported walking on exercise capacity and walking speed in patients with knee osteoarthritis: A randomized controlled trial,” J. Japanese Phys. Ther. Assoc. 16 (1), 2835 (2013).CrossRefGoogle ScholarPubMed