Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T22:59:45.109Z Has data issue: false hasContentIssue false

Parametrically excited inverted double pendulum and efficient bipedal walking with an upper body

Published online by Cambridge University Press:  22 February 2013

Toyoyuki Honjo*
Affiliation:
Department of Computer Science and Systems Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, Hyogo, 657-8501, Japan
Akinori Nagano
Affiliation:
Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, Hyogo, 657-8501, Japan
Zhi-Wei Luo
Affiliation:
Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, Hyogo, 657-8501, Japan
*
*Corresponding author. E-mail: carcharo-mack@cs11.cs.kobe-u.ac.jp

Summary

Walking locomotion involves complex movement of total center of mass. Not only the lower body behavior but also the upper body behavior affects the walking characteristics. Therefore, in this paper we derive the principle of parametrically excited inverted double pendulum to consider both lower body and upper body dynamics. We propose one approach to utilize the upper body behavior of the robot for energy efficient bipedal locomotion. In addition, we analyze the property of parametrically excited inverted double pendulum.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.McGeer, T., “Passive dynamic walking,” Int. J. Robot. Res. 57 (2), 6282 (1990).CrossRefGoogle Scholar
2.Asano, F., Luo, Z. W. and Hyon, S., “Parametric Excitation Mechanisms for Dynamic Bipedal Walking,” Proceedings of the IEEE International Conference on Robotics and Automation (2005).Google Scholar
3.Asano, F., Hayashi, T., Luo, Z. W., Hirano, S. and Kato, A., “Parametric Excitation Approaches to Efficient Bipedal Walking,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2007).Google Scholar
4.Asano, F. and Luo, Z. W., “Energy-efficient and high-speed dynamic biped locomotion based on principle of parametric excitation,” IEEE Trans. Robot. 24 (6), 12891301 (2008).CrossRefGoogle Scholar
5.Harata, Y., Asano, F., Taji, K. and Uno, Y., “Biped Gait Generation Based on Parametric Excitation by Knee-Joint Actuation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2007).CrossRefGoogle Scholar
6.Harata, Y., Asano, F., Taji, K. and Uno, Y., “Efficient Parametric Excitation Walking with Delayed Feedback Control,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2009).CrossRefGoogle Scholar
7.Harata, Y., Asano, F., Luo, Z. W., Taji, K. and Uno, Y., “Biped gait generation based on parametric excitation by knee-joint actuation,” Robotica 27, 10631073 (2009).CrossRefGoogle Scholar
8.Honjo, T., Luo, Z. W. and Nagano, A., “Parametric Excitation of a Biped Robot as an Inverted Pendulum,” Proceedings of IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems (2008).CrossRefGoogle Scholar
9.Honjo, T., Hayashi, T., Nagano, A. and Luo, Z. W., “Target Trajectory Design of Parametrically Excited Inverted Pendulum for Efficient Bipedal Walking,” Proceedings of the International Conference on Control, Automation, Robotics and Vision (2011).Google Scholar
10.Wisse, M., Schwab, A. L. and van der Helm, F. C. T., “Passive dynamic walking model with upper body,” Robotica 22, 681688 (2004).CrossRefGoogle Scholar
11.Wisse, M., Hobbelen, D. G. E. and Schwab, A. L., “Adding an upper body to passive dynamic walking robots by means of a bisecting hip mechanism,” IEEE Trans. Robot. 23 (1), 112123 (2007).CrossRefGoogle Scholar
12.Narukawa, T., Takahashi, M. and Yoshida, K., “Numerical simulations of level-ground walking based on passive walk for planar biped robots with torso by hip actuators,” JSME J. Syst. Des. Dyn. 2 (2), 463474 (2008).Google Scholar
13.Narukawa, T., Takahashi, M. and Yoshida, K., “Efficient walking with optimization for a planar biped walker with a torso by hip actuators and springs,” Robotica 29, 641648 (2011).CrossRefGoogle Scholar
14.Lavrovskii, E. K. and Formalskii, A. M., “Optimal control of the pumping and damping of swing,” J. Appl. Math. Mech. 57 (2), 311320 (1993).CrossRefGoogle Scholar
15.Hayashi, T., Asano, F., Luo, Z. W., Nagano, A., Kaneko, K. and Kato, A., “Experimental Study of a Parametrically Excited Dynamical Bipedal Walker with Counterweights,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2009).CrossRefGoogle Scholar
16.Hayashi, T., Kaneko, K., Asano, F. and Luo, Z. W., “Experimental Study of Dynamic Bipedal Walking Based on the Principle of Parametric Excitation with Counterweights,” Adv. Robot. 25, 273287 (2011).CrossRefGoogle Scholar
17.Hayashi, T., Honjo, T., Nagano, A. and Luo, Z. W., “Asymmetric parametric excitation mechanism for biped robot,” J. Robot. Soc. Japan 30 (2), 173179 (2012) (in Japanese).CrossRefGoogle Scholar
18.Asano, F., “Dynamic Gait Generation of Telescopic-Legged Rimless Wheel Based on Asymmetric Impact Posture,” Proceedings of the 9th IEEE-RAS International Conference on Humanoid Robots (2009).CrossRefGoogle Scholar
19.Rummel, J., Blum, Y., Maus, H. M., Rode, C. and Seyfarth, A., “Stable and Robust Walking with Compliant Legs,” Proceedings of the IEEE International Conference on Robotics and Automation (2010).CrossRefGoogle Scholar
20.Merker, A., Rummel, J. and Seyfarth, A., “Stable walking with asymmetric legs,” Bioinspiration & Biomimetics 6 (4), 045004 (2011).CrossRefGoogle ScholarPubMed
21.Dong, H., Zhao, M. and Zhang, N., “High-speed and energy-efficient biped locomotion based on virtual slope walking,” Auton. Robots 30 (2), 199216 (2011).CrossRefGoogle Scholar
22.Das, T. and Mukherjee, R., “Dynamic analysis of rectilinear motion of a self-propelling disc with unbalance masses,” Trans. ASME J. 68 (1), 5866 (2001).CrossRefGoogle Scholar
23.Flynn, L. L., Jafari, R. and Mukherjee, R., “Active synthetic-wheel biped with torso,” IEEE Trans. Robot. 26 (5), 816826 (2010).CrossRefGoogle Scholar
24.Sreenath, K., Park, H. W., Poulakakis, I. and Grizzle, J. W., “A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL,” Int. J. Robot. Res. 30 (9), 11701193 (2010).CrossRefGoogle Scholar
25.Collins, S., Ruina, A., Tedrake, R. and Wisse, M., “Efficient bipedal robots based on passive-dynamic walkers,” Science 307, 10821085 (2005).CrossRefGoogle ScholarPubMed
26.Ferreira, J. P., Crisóstomo, M. M. and Coimbra, A. P., “Human gait acquisition and characterization,” IEEE Trans. Instrum. Meas. 58 (9), 29792988 (2009).CrossRefGoogle Scholar