Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T07:48:14.119Z Has data issue: false hasContentIssue false

Precise positioning in a robotized laser-cutting machine allowed by a three-V-shaped-groove kinematic coupling: a feasibility study

Published online by Cambridge University Press:  15 May 2023

Carlo De Benedictis*
Affiliation:
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
Carlo Ferraresi
Affiliation:
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
*
Corresponding author: Carlo De Benedictis; Email: carlo.debenedictis@polito.it

Abstract

Devices known as kinematic couplings offer accurate, repeatable, and stiff connections between two parts. They are characterized by point contacts and enable great repeatability with errors less than 1 micron, in contrast to conventional coupling systems like alignment pins or those based on elastic deformation. In this study, a robotized laser-cutting machine is equipped with a three-groove kinematic coupling design to increase the precision of workpiece placement. Given the application’s requirements, a preliminary design of the coupling is defined. An analytical approach is provided for calculating stresses and deflections at the locations where balls and grooves make contact, and it is then utilized to calculate positioning errors caused by the mechanical structure’s elastic deformation under various loading conditions. The outcomes of the simulations are finally discussed and highlight the efficacy of the solution tested.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vallance, R. R., Morgan, C. and Slocum, A. H., “Precisely positioning pallets in multi-station assembly systems,” Precis. Eng. 28(2), 218231 (2004). doi: 10.1016/j.precisioneng.2002.11.003.CrossRefGoogle Scholar
Slocum, A. H.. Precision Machine Design (Prentice-Hall, Inc, Englewood Cliffs, NJ, 1992).Google Scholar
Ciavarella, M., Baldini, A., Barber, J. R. and Strozzi, A., “Reduced dependence on loading parameters in almost conforming contacts,” Int. J. Mech. Sci. 48(9), 917925 (2006). doi: 10.1016/j.ijmecsci.2006.03.016.CrossRefGoogle Scholar
van de Berg, N. J., De Jong, T. L., Van Gerwen, D. J., Dankelman, J. and Van Den Dobbelsteen, J. J., “The influence of tip shape on bending force during needle insertion,” Sci. Rep. 7(1), 40477 (2017). doi: 10.1038/srep40477.CrossRefGoogle ScholarPubMed
Guamàn-Lozada, D., Ahuett-Garza, H., Castro-Martin, A. P., Ruiz-Carrizal, J., Márquez-Alderete, M. F., Anaya-Aranda, J. G., Kurfess, T. R. and de Castilla, E. G., “Design and testing of a positioning system based on a quasi kinematic guide and a clamp plate suspended by compliant straps for in-line metrology systems,” Manuf. Lett. 24, 1922 (2020). doi: 10.1016/j.mfglet.2020.03.006.CrossRefGoogle Scholar
Zhang, D., Li, P., Xu, W., Li, Z., Jin, G. and Zhang, J., “A strain-free semi-kinematic mount for ultra-precision optical systems,” Opt. Lasers Eng. 134, 106287 (2020). doi: 10.1016/j.optlaseng.2020.106287.CrossRefGoogle Scholar
Culpepper, M. L., “Design of quasi-kinematic couplings,” Precis. Eng. 28(3), 338357 (2004). doi: 10.1016/j.precisioneng.2002.12.001.CrossRefGoogle Scholar
Hale, L. C. and Slocum, A. H., “Optimal design techniques for kinematic coupling,” Precis. Eng. 25(2), 114127 (2001). doi: 10.1016/S0141-6359(00)00066-0.CrossRefGoogle Scholar
Culpepper, M. L., Kartik, M. V. and DiBiasio, C., “Design of integrated eccentric mechanisms and exact constraint fixtures for micron-level repeatability and accuracy,” Precis. Eng. 29(1), 6580 (2005). doi: 10.1016/j.precisioneng.2004.05.007.CrossRefGoogle Scholar
Slocum, A. H., “Kinematic couplings: A review of design principles and applications,” Int. J. Mach. Tools Manuf. 50(4), 310327 (2010). doi: 10.1016/j.ijmachtools.2009.10.006.CrossRefGoogle Scholar
Budak, E., Matsubara, A., Donmez, A. and Munoa, J., “Mechanical interfaces in machine tools,” CIRP Ann. 71(2), 647670 (2022). doi: 10.1016/j.cirp.2022.05.005.CrossRefGoogle Scholar
Slocum, A. H., “Kinematic couplings for precision fixturing—Part I: Formulation of design parameters,” Precis. Eng. 10(2), 8591 (1988). doi: 10.1016/0141-6359(88)90005-0.CrossRefGoogle Scholar
Slocum, A. H., Muller, L. and Braunstein, D., Flexural mount kinematic couplings and method, 2005, US Patent No. US5678944A.Google Scholar
Penny, R. W. and Hart, A. J., “Precision assembly of additively manufactured components using integral kinematic couplings,” Precis. Eng. 60, 104115 (2019). doi: 10.1016/j.precisioneng.2019.04.011.CrossRefGoogle Scholar
Slocum, A. H. and Domnez, A., “Kinematic couplings for precision fixturing —part 2: Experimental determination of repeatability and stiffness,” Precis. Eng. 10(3), 115122 (1988). doi: 10.1016/0141-6359(88)90029-3.CrossRefGoogle Scholar
De Benedictis, C. and Ferraresi, C., “Study of a three-groove kinematic coupling for precise positioning in a robotized laser-cutting machine,” Adv. Service Ind. Robot. 120, 264271 (2022). doi: 10.1007/978-3-031-04870-8_31.Google Scholar
Prima Industrie S.p.A. Homepage. https://www.primaindustrie.com/it, last accessed 2022/01/31.Google Scholar
Slocum, A. H., “Design of three-groove kinematic couplings,” Precis. Eng. 14(2), 6776 (1992). doi: 10.1016/0141-6359(92)90051-W.CrossRefGoogle Scholar
Hale, L. C., “Testing the limiting coefficient of friction with an adjustable 3-V kinematic coupling,” Precis. Eng. 64, 200209 (2020). doi: 10.1016/j.precisioneng.2020.04.003.CrossRefGoogle Scholar
Roark, R. J. and Young, W. C.. Formulas for Stress and Strain, 5th edition, McGraw-Hill Book Co., New York, (1975).Google Scholar