Article contents
Recursive field estimation and tracking for autonomous manipulation
Published online by Cambridge University Press: 15 September 2011
Summary
Autonomous operation of mechanical systems often requires the ability to detect and locate a particular phenomenon occurring in the surrounding environment. Being implemented to articulated manipulation, such a capability may realize a wide range of applications in autonomous maintenance and repair. This paper presents the sensor-driven task space control of an end-effector that combines the field estimation and the target tracking in an unknown spatial field of interest. The radial basis function network is adopted to model spatial distribution of an environmental phenomenon as a scalar field. Their weight parameters are estimated by a recursive least square method using collective measurements from the on-board sensors mounted to the manipulator. Then the asymptotic source tracking has been achieved by the control law based on the gradient of the estimated field. A new singularity tolerant scheme has been suggested to command the task space control law despite singular configurations. Simulation results using the three-link planar robot and the 6-revolute elbow manipulator are presented to validate the main ideas.
- Type
- Articles
- Information
- Copyright
- Copyright © Cambridge University Press 2011
References
- 1
- Cited by