Published online by Cambridge University Press: 27 September 2021
This article designs a frog-inspired swimming robot based on pneumatic muscles. The musculoskeletal characteristics of the frog are refined and used as the basis for the design of the robot joint structure and movement mode. The posture adjustment module, joint water seal, and power system are designed to meet the robot’s motion requirements, and the structure optimization design of the robot is completed by combining simulation analysis. The body length of the robot is about 710 mm, and the overall mass is 10 kg. Combining the structural characteristics of the robot, the control system is built to realize the frog-like motion. The robot’s propulsion speed is about 0.6 m/s, the propulsion distance reaches 2.4 m, the turning angle is 30°, and the turning radius is 0.6 m. The prototype experiment verifies the rationality of the frog-inspired swimming robot structure design and the reliability of the control system and water seal.