Article contents
Rigid–flexible coupling dynamics analysis with joint clearance for a 5-DOF hybrid polishing robot
Published online by Cambridge University Press: 02 December 2021
Summary
Considering the polishing requirements for high-precision aspherical optical mirrors, a hybrid polishing robot composed of a serial–parallel manipulator and a dual rotor grinding system is proposed. Firstly, based on the kinematics of serial components, the equivalent load model for the parallel manipulator is established. Then, the elastodynamic model of kinematic branched-chains of the parallel manipulator is established by using the spatial beam element, and the rigid–flexible coupling dynamic model of the polishing robot is obtained with Kineto-elasto dynamics theory. Further, considering the dynamic properties of the joint clearance, the rigid–flexible coupling dynamic model with the joint clearance for the polishing robot is established. Finally, the equivalent load distribution of the parallel manipulator is analyzed, and the effect of the branched-chain elasticity and joint clearance on the motion error of the polishing robot is studied. This article provides a theoretical basis for improving the motion accuracy and dynamic performance of the hybrid polishing robot.
Keywords
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
- 10
- Cited by