Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T08:12:47.520Z Has data issue: false hasContentIssue false

Robot-assisted MRI-guided prostatic interventions

Published online by Cambridge University Press:  07 December 2009

Andrew A. Goldenberg*
Affiliation:
Engineering Services Inc., Toronto, ON, Canada Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
John Trachtenberg
Affiliation:
Prostate Center, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada Department of Surgery, University of Toronto, Toronto, ON, Canada
Yang Yi
Affiliation:
Engineering Services Inc., Toronto, ON, Canada
Robert Weersink
Affiliation:
Biomedical Imaging, Princess Margaret Hospital, University Research Network, Toronto, ON, Canada
Marshall S. Sussman
Affiliation:
Medical Imaging, Toronto General Hospital, University Health Network, Toronto, ON, Canada
Masoom Haider
Affiliation:
Radiology, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
Liang Ma
Affiliation:
Engineering Services Inc., Toronto, ON, Canada
Walter Kucharczyk
Affiliation:
Radiology, Toronto General Hospital, University Health Network, Toronto, ON, Canada Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
*
*Corresponding author. E-mail: golden@esit.com

Summary

This paper reports on recent progress made toward the development of a new magnetic resonance imaging (MRI)-compatible robot-assisted surgical system for closed-bore image-guided prostatic interventions: thermal ablation, radioactive seed implants (brachytherapy), and biopsy. Each type of intervention will be performed with a different image-guided, robot-based surgical tool mounted on the same MRI-guided robot through a modular trocar. The first stage of this development addresses only laser-based focal ablation. The robot mechanical structure, modular surgical trocar, control architecture, and current stage of performance evaluation in the MRI environment are presented. The robot actuators are ultrasonic motors. A methodology of using such motors in the MRI environment is presented. The robot prototype with surgical ablation tool is undergoing tests on phantoms in the MRI bore. The tests cover MRI compatibility, image visualization, robot accuracy, and thermal mapping. To date, (i) the images are artifact- and noise-free for certain scanning pulse sequences; (ii) the robot tip positioning error is less than 1.2 mm even at positions closer than 0.3 m from the MRI isocenter; (iii) penetration toward the target is image-monitored in near-real time; and (iv) thermal ablation and temperature mapping are achieved using a laser delivered on an optical fiber and MRI, respectively.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bornson, J. G., “Imaging prostate cancer: Before, during, and after treatment,” Imaging Economics (Oct.–Nov. 2001).Google Scholar
2. Chinzei, K. and Miller, K., “Towards MRI guided surgical manipulator,” Med. Sci. Mon. 7 (1), 153163 (2001).Google ScholarPubMed
3. Chopra, R., Wachsmuth, J., Burtnyk, M., Haider, M. A. and Bronskill, M. A., “Analysis of factors important for transurethral ultrasound prostate heating using MR temperature feedback,” Phys. Med. Biol. 51, 827844 (2006).CrossRefGoogle ScholarPubMed
4. DiMaio, S. P., Fischer, G. S., Haker, S. J., Hata, N., Iordachita, I., Tempany, C. M., Kikinis, R. and Fichtinger, G., “A system for MRI-guided prostate interventions,” Proceedings of the International Conference on Biomedical Robotics and Biomechatronics (BioRob), Pisa, Italy (2006).Google Scholar
5. Eggener, S. E., Scardino, P. T., Carroll, P. R., Zelefsky, M. J., Sartor, O., Hricak, H., Wheeler, T. M., Fine, S. W., Trachtenberg, J., Rubin, M. A., Ohori, M., Kuroiwa, K., Rossignol, M. and Abenhaim, L., “Focal therapy for localized prostate cancer: A critical appraisal of rationale and modalities,” J. Urol. 178, 22602267 (2007).CrossRefGoogle ScholarPubMed
6. Elhawary, H., Zivanovic, A., Davies, B. and Lampérth, M., “A review of magnetic resonance imaging. compatible manipulators in surgery,” J. Eng. Med. Proc. Inst. Mech. Eng., Part H 220 (3), 413424 (2006).CrossRefGoogle ScholarPubMed
7. Elhawary, H., Zivanovic, A., Rea, M., Davies, B., Besant, C., McRobbie, D., de Souza, N., Young, I. and Lampérth, M., “The feasibility of MR-image guided prostate biopsy using piezoceramic motors inside or near to the magnet isocentre,” Medical Image Computing and Computer-Assisted Intervention–-MICCAI, Springer-Verlag, Berlin, Part 1 (2006) pp. 519526.Google Scholar
8. Fischer, G. S., Iordachita, I., Csoma, C., Tokuda, J., DiMaio, S. P., Tempany, C. M., Hata, N. and Fichtinger, G., “MRI-compatible pneumatic robot for transperineal prostate needle placement,” IEEE/ASME Trans. Mechatron. 13 (3), 295305 (2008).CrossRefGoogle ScholarPubMed
9. Futterer, J. J., Heijmink, S. W., Scheenen, W. T., Veltman, J., Huisman, H. J., Vos, P., Hulsbergen-Van de Kaa, C. A., Witjes, J. A., Krabbe, P. F., Heerschap, A. and Barentsz, J. O., “Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging,” Radiology 241 (2), 449458 (2006).CrossRefGoogle ScholarPubMed
10. Goldenberg, A. A., Trachtenberg, J., Kucharczyk, W., Yang, Y., Haider, M., Ma, L., Weersink, R., Raoufi, C., “Robotic system for closed-bore MRI-guided prostatic interventions,” ASME/IEEE Trans. Mechatron. 13 (3), 374379 (2008).CrossRefGoogle Scholar
11. Haider, M. A., van der Kwast, T. H., Tanguay, J., Evans, A. J., Hashmi, A. T., Lockwood, G. and Trachtenberg, J., “Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer,” AJR Am. J. Roentgenol. 189, 323328 (2007).CrossRefGoogle ScholarPubMed
12. Hata, N., Ohara, F., Hashimoto, R., Hashizume, M. and Dohi, T., “Needle guiding robot with five-bar linkage for MR-guided thermotherapy of liver tumor,” Proceedings of MICCAI, Saint-Malo, France (2004).Google Scholar
13. Kaiser, W. A., Fischer, H., Vagner, J. and Selig, M., “Robotic system for biopsy and therapy of breast lesions in a high-field whole-body magnetic resonance tomography unit,” Investig. Radiol. 35 (8), 513519 (2000).CrossRefGoogle Scholar
14. Koseki, Y., Chinzei, K., Koyachi, N. and Arai, T., “Robotic assist for MR-guided surgery using leverage and parallelepiped mechanism,” Medical Image Computing and Computer-Assisted Intervention–- MICCAI 2000, Springer, Berlin 220(3) (2000) pp. 940948.CrossRefGoogle Scholar
15. Kim, D. and Dohi, T., “A new, compact MR-compatible surgical manipulator for minimally invasive liver surgery”. Proceedings of MICCAI 2002 (2002) pp. 99–106.Google Scholar
16. Kim, K. C., Park, B. K. and Kim, B., “Localization of prostate cancer using 3T MRI: Comparison of T2-weighted and dynamic contrast-enhanced imaging,” J. Comput. Assist. Tomogr. 30 (1), 711 (2006).CrossRefGoogle ScholarPubMed
17. Krieger, A., Susil, R., Menard, C., Coleman, J., Fichtinger, G., Atalar, E. and Whitcomb, L., “Design of a novel MRI compatible manipulator for image guided prostate intervention,” IEEE Trans. Biomed. Eng. 52 (2) 306313 (2005).CrossRefGoogle Scholar
18. Lagerburg, V., Moerland, M. A., Konings, M. K., van de Vosse, R. E., Lagendijk, J. J. W. and Battermann, J. J., “Development of a device: A new needle insertion method for prostate brachytherapy,” Phys. Med. Biol. 51, 891902 (2006).CrossRefGoogle ScholarPubMed
19. Lagerburg, V., Moerland, M. A., van Vulpen, M. and Lagendijk, J. J. W., “A new robotic needle insertion method to minimise attendant prostate motion,” Radiother. Oncol. 80 (1), 7377 (2006).CrossRefGoogle ScholarPubMed
20. Larson, B. T., Erdman, A. G., Tsekos, N. V., Yacoub, E., Tsekos, P. V. and Koutlas, I. G., “Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast,” J. Biomech. Eng. [Trans. ASME] 126, 458465 (2004).CrossRefGoogle ScholarPubMed
21. Lim, H. K., Kim, J. K., Kim, K. A. and Cho, K. S., “Prostate cancer: Apparent diffusion coefficient map with T2-weighted images for detection–-A multireader study,” Radiology 250 (1), 145151 (2009).CrossRefGoogle ScholarPubMed
22. Louw, D. F., Fielding, T., McBeth, P., Gregoris, D., Newhook, P. and Sutherland, G. R., “Surgical robotics, a review and neurosurgical prototype development,” Neurosurgery 54 (3), 525535 (2004).CrossRefGoogle ScholarPubMed
23. Markisz, J. A. and Aquilia, M., Technical Magnetic Resonance Imaging (McGraw-Hill, 1996).Google Scholar
24. Masamune, K., Kobayashi, E., Masutani, Y., Suzuki, M., Dohi, T., Iseki, H. and Takakura, K., “Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery,” J. Image Guided Surg. 1, 242248 (1995).3.0.CO;2-A>CrossRefGoogle ScholarPubMed
25. Miyata, N., Kobayashi, E., Kim, D., Masamune, K., Sakuma, I., Yahagi, N., Tsuji, T., Inada, H., Dohi, T., Iseki, H. and Takakura, K., “Micro-grasping forceps manipulator for MR-guided neurosurgery,” Proceedings MICCAI (2002) pp. 107–113.Google Scholar
26. Mazaheri, Y., Shukla-Dave, A., Hricak, H., Fine, S. W., Zhang, J., Inurrigarro, G., Moskowitz, C. S., Ishill, N. M., Reuter, V. E., Touijer, K., Zakian, K. L. and Koutcher, J. A., “Prostate cancer: Identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging–-Correlation with pathologic findings,” Radiology 246 (2), 480488 (2008).CrossRefGoogle ScholarPubMed
27. Nakamura, R., Masamune, K., Nishikawa, Y., Koboayashi, E., Sakuma, I., Dohi, T., Iseki, H. and Takakura, K., “Development of a sterilizable MRI-compatible manipulator for stereotactic neurosurgery,” Proceedings of Computer Assisted Radiology and Surgery (CARS' 99), Paris (1999).Google Scholar
28. Oura, M., Kobayashi, Y., Okamoto, J. and Fujie, M. G., “Development of MRI compatible versatile manipulator for minimally invasive surgery,” Biomedical Robotics and Biomechatronics. The First IEEE/RAS-EMBS International Conference (2006) pp. 176–181.Google Scholar
29. Peters, R. D., Hinks, R. S. and Henkelman, R. M., “Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry,” Magn. Reson. Med. 40, 454459 (1998).CrossRefGoogle ScholarPubMed
30. Potosky, A. L., Davis, W. W., Hoffman, R. M., Stanford, J. L., Stephenson, R. A., Penson, D. F. and Harlan, L. C., “Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: The prostate cancer outcomes study,” J. Natl. Canc. Inst. 96 (18), 13581367 (2004).CrossRefGoogle ScholarPubMed
31. Raoufi, C., Ben-Tzvi, P., Goldenberg, A. A. and Kucharczyk, W., “A MR-compatible tele-robotic system for MRI-guided intervention: System overview and mechanical design,” Proceedings of IEEE/RSJ Conference on Intelligent Robots and Systems, San Diego, CA (2007).Google Scholar
32. Stoianovici, D., Song, D., Petrisor, D., Ursu, D., Mazilu, D., Muntener, M., Schar, M. and Patriciu, A., “MRI stealth robot for prostate interventions,” Minim. Invasive Ther. 16 (4), 241248 (2007).CrossRefGoogle ScholarPubMed
33. Suzuki, T., Liao, H., Kobayashi, E. and Sakuma, I., “Ultrasonic motor driving method for EMI-free image and MR image-guided surgical robotic system,” Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (2007) pp. 522–527.Google Scholar
34. Tajima, F., Kishi, K., Nishizawa, K., Kan, K., Nemoto, Y., Takeda, H., Umemura, S., Takeuchi, H., Fujie, M. G., Dohi, T., Sudo, K. and Takamoto, S., “Development of MR compatible surgical manipulator toward a unified support system for diagnosis and treatment of heart disease,” Proceedings of MICCA '02 (2002) pp. 83–90.Google Scholar
35. Tsekos, N. V., Ozcan, A. and Christoforou, E., “A prototype manipulator for magnetic resonance-guided interventions inside standard cylindrical magnetic resonance imaging scanner,” J. Biomed. Eng. 127, 972980 (2005).Google Scholar
36. Tsekos, N., Khanicheh, A., Christoforou, E. and Mavroidis, C., “Magnetic-resonance compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: A review study,” Ann. Rev. Biomed. Eng. 9, 351387 (2007).CrossRefGoogle ScholarPubMed
37. Yu, K. K. and Hricak, H., “Imaging prostate cancer,” Radiol. Clin. North Am. 38 (1) 5985 (2000).CrossRefGoogle ScholarPubMed