Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T16:32:43.341Z Has data issue: false hasContentIssue false

Robot-assisted perception augmentation for online detection of insertion failure during cochlear implant surgery

Published online by Cambridge University Press:  09 June 2016

J. Pile
Affiliation:
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235USA. E-mail: jason.pile@vanderbilt.edu
G. B. Wanna
Affiliation:
Department of Otolaryngology Head & Neck Surgery, Vanderbilt University, Nashville, TN 37235USA. E-mail: george.wanna@vanderbilt.edu
N. Simaan*
Affiliation:
Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235USA. E-mail: jason.pile@vanderbilt.edu Department of Otolaryngology Head & Neck Surgery, Vanderbilt University, Nashville, TN 37235USA. E-mail: george.wanna@vanderbilt.edu
*
*Corresponding author. E-mail: nabil.simaan@vanderbilt.edu

Summary

During the past decade, robotics for cochlear implant electrode array insertion has been limited to manipulation assistance. Going beyond manipulation assistance, this paper presents the new concept of perception augmentation to detect and warn against the onset of intracochlear electrode array tip folding. This online failure detection method uses a combination of intraoperative electrode insertion force data and a predictive model of insertion force profile progression as a function of insertion depth. The predictive model uses statistical characterization of insertion force profiles during normal robotic electrode array insertions as well as the history of intra-operative insertion forces. Online detection of onset of tip folding is achieved using the predictive model as an input into a support vector machine classifier. Results show that the detection of tip folding onset can be achieved with an accuracy of 88% despite the use of intra-operative insertion force data representing incomplete insertion. This result is significant because it allows the surgeon or robot to choose a corrective action for preventing intra-cochlear complications.

Type
Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Adunka, O., Gstoettner, W., Hambek, M., Unkelbach, M. H., Radeloff, A. and Kiefer, J., “Preservation of basal inner ear structures in cochlear implantation,” ORL; J. Oto-Rhino-Laryngology Relat. Specialties 66 (6), 306–12 (2004a).Google Scholar
2. Adunka, O., Kiefer, J., Unkelbach, M. and Lehnert, T., “Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation,” The Laryngoscope 114 (July), 12371241 (2004b).Google Scholar
3. Baud-bovy, G. and Gatti, E., “Hand-held object force direction identification,” Lecture Notes Comput. Sci. 6192, 231236 (2010).Google Scholar
4. Briggs, R. J., Tykocinski, M., Saunders, E., Hellier, W., Dahm, M., Pyman, B. and Clark, G. M., “Surgical implications of perimodiolar cochlear implant electrode design: Avoiding intracochlear damage and scala vestibuli insertion,” Cochlear Implants Int. 2 (2), 135–49 (2001).Google Scholar
5. Briggs, R. J. S., Tykocinski, M., Lazsig, R., Aschendorff, A., Lenarz, T., Stöver, T., Fraysse, B., Marx, M., Roland, J. T., Roland, P. S.., Wright, C. G., Gantz, B. J., Patrick, J. F. and Risi, F., “Development and evaluation of the modiolar research array–multi-centre collaborative study in human temporal bones,” Cochlear Implants Int. 12 (3), 129–39 (2011).Google Scholar
6. Bromiley, P. A., “Products and convolutions of Gaussian distributions,” Tech. rep., Medical School, Univ. Manchester, Manchester, UK, Tech. Rep 3, Manchester, UK (2003).Google Scholar
7. Carlson, M. L., Driscoll, C. L. W., Gifford, R. H., Service, G. J., Tombers, N. M., Hughes, B. J.-Borst, B. a. Neff and Beatty, C. W., “Implications of minimizing trauma during conventional cochlear implantation,” Otology Neurotology 32 (6), 962–8 (2011).Google Scholar
8. Clark, J. R., Toward Improved Cochlear Implant Insertion Using Magnetic Guidance. Masters' Thesis, University of Utah (2011).Google Scholar
9. Cohen, L. T., Xu, J., Xu, S. A. and Clark, G. M., “Improved and simplified methods for specifying positions of the electrode bands of a cochlear implant array,” Am. J. Otology 17 (6), 859–65 (1996).Google Scholar
10. Cosetti, M. and Roland, J. T. Jr, “Cochlear implant electrode insertion,” Operative Tech. Otolaryngology Head Neck Surg. 21 (4), 223232 (2010).Google Scholar
11. Eshraghi, A., Yang, N. and Balkany, T., “Comparative study of cochlear damage with three perimodiolar electride designs,” Laryngeoscope 113, 415419 (2003).Google Scholar
12. Farouki, R. T. and Goodman, T. N. T., “On the optimal stability of the Bernstein basis,” Math. Comput. 65 (216), 15531567 (1996).Google Scholar
13. Finley, C. C., Holden, T. A., Holden, L. K., Whiting, B. R., Chole, R. A., Neely, G. J., Hullar, T. E. and Skinner, M. W., “Role of electrode placement as a contributor to variability in cochlear implant outcomes,” Otology Neurotology 29 (7), 920–8 (2008).Google Scholar
14. Gifford, R. H., Dorman, M. F., Skarzynski, H., Lorens, A., Polak, M., Driscoll, C. L. W., Roland, P. and Buchman, C. A., “Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments,” Ear Hearing 34 (4), 413–25 (2013).Google Scholar
15. Ibrahim, H. N., Helbig, S., Bossard, D. and Truy, E., “Surgical trauma after sequential insertion of intracochlear catheters and electrode arrays (a histologic study),” Otology Neurotology 32 (9), 1448–54 (2011).Google Scholar
16. King, H. H., Donlin, R. and Hannaford, B., “Perceptual thresholds for single vs. multi-finger haptic interaction,” Proceedings of the IEEE Haptics Symposium, IEEE, Waltham, MA USA (2010) pp. 95–99.Google Scholar
17. Kontorinis, G., Lenarz, T., Stöver, T. and Paasche, G., “Impact of the insertion speed of cochlear implant electrodes on the insertion forces,” Otology Neurotology 32 (4), 565–70, (2011).Google Scholar
18. Kontorinis, G., Paasche, G., Lenarz, T. and Stöver, T., “The effect of different lubricants on cochlear implant electrode insertion forces,” Otology Neurotology 32 (7), 1050–6 (2011b).Google Scholar
19. Majdani, O., Schurzig, D., Hussong, A., Rau, T., Wittkopf, J., Lenarz, T. and Labadie, R. F., “Force measurement of insertion of cochlear implant electrode arrays in vitro: Comparison of surgeon to automated insertion tool,” Acta Oto-Laryngologica 130 (1), 31–6 (2010).Google Scholar
20. Miroir, M., Nguyen, Y., Kazmitcheff, G., Ferrary, E., Sterkers, O., Grayeli, A. B., “Friction force measurement during cochlear implant insertion: Application to a force-controlled insertion tool design,” Otology Neurotology 33 (6), 1092–100 (2012).Google Scholar
21. NIH Medical Arts, accessed 2011. http://www.medarts.nih.gov/.Google Scholar
22. Noble, J. H., Labadie, R. F., Majdani, O. and Dawant, B. M., “Automatic segmentation of intracochlear anatomy in conventional CT,” IEEE Trans. Bio-Med. Eng. 58 (9), 2625–32 (2011).Google Scholar
23. Pile, J., Cheung, M. Y., Zhang, J. and Simaan, N., “Algorithms and design Considerations for Robot Assisted Insertion of Perimodiolar Electrode Arrays,” IEEE International Conference on Robotics and Automation (ICRA'2011), Shanghai, China (2011) pp. 2898–2904.Google Scholar
24. Pile, J., Member, S. and Simaan, N., “Modeling, design, and evaluation of a parallel robot for cochlear implant surgery,” IEEE/ASME Trans. Mechatronics 19 (6), 17461755 (2014).Google Scholar
25. Pile, J. and Simaan, N., “Characterization of Friction and Speed effects and Methods for Detection of Cochlear Implant Electrode Tip Fold-Over,” Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany (May 2013) pp. 4409–4414.Google Scholar
26. Pile, J., Wanna, G. B. and Simaan, N., “Force-Based Flexible Path Plans for Robotic Electrode Insertion,” Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, Hong Kong (2014b) pp. 297–303.Google Scholar
27. Rohani, P., Pile, J., Kahrs, L. a., Balachandran, R., Blachon, G. S., Simaan, N. and Labadie, R. F., “Forces and trauma associated with minimally invasive image-guided cochlear implantation,” Otolaryngology 150 (4), 638–45 (2014).Google Scholar
28. Roland, J. T., “A model for cochlear implant electrode insertion and force evaluation: Results with a new electrode design and insertion technique,” Laryngoscope 115 (8), 1325–39 (2005).Google Scholar
29. Scholkopf, B., Burges, C. and Smola, A. (Eds.), Advances in Kernel Methods: Support Vector Learning (MIT Press, Cambridge, UK, 1999).Google Scholar
30. Schölkopf, B. and Smola, A., “New support vector algorithms,” Neural Comput. 1245 (x), 12071245 (2000).Google Scholar
31. Schurzig, D., Webster, R. J., Dietrich, M. S. and Labadie, R. F., “Force of cochlear implant electrode insertion performed by a robotic insertion tool: Comparison of traditional versus Advance Off-Stylet techniques,” Otology Neurotology 31 (8), 1207–10 (2010).Google Scholar
32. Strang, G., Computational Science and Engineering (Wellesley Cambridge Press, Wellesley, MA USA, 2007).Google Scholar
33. Todd, C. A., Naghdy, F. and Svehla, M. J., “Force application during cochlear implant insertion: An analysis for improvement of surgeon technique,” IEEE Trans. Bio-Med. Eng. 54 (7), 1247–55 (2007).Google Scholar
34. Wanna, G. B., Noble, J. H., Carlson, M. L., Gifford, R. H., Dietrich, M. S., Haynes, D. S., Dawant, B. M. and Labadie, R. F., “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” Laryngoscope 124 (Suppl6), 17 (2014).Google Scholar
35. Wanna, G. B., Noble, J. H., McRackan, T. R., Dawant, B. M., Dietrich, M. S., Watkins, L. D., Rivas, A., Schuman, T. A. and Labadie, R. F., “Assessment of electrode placement and audiological outcomes in bilateral cochlear implantation,” Otology Neurotology 32 (3), 428–32 (2011).Google Scholar
36. Wardrop, P., Whinney, D., Rebscher, S. J., Luxford, W. and Leake, P., “A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II: Comparison of Spiral Clarion and HiFocus II electrodes,” Hearing Res. 203 (1–2), 6879 (2005).Google Scholar
37. Zhang, J., Bhattacharyya, S. and Simaan, N., “Model and Parameter Identification of Friction During Robotic Insertion of Cochlear-Implant Electrode Arrays,” Proceedings of the IEEE International Conference on Robotics and Automation (Kobe, Japan, 2009a) 3859–3864.Google Scholar
38. Zhang, J., Roland, J. T., Manolidis, S. and Simaan, N., “Optimal path planning for robotic insertion of steerable electrode arrays in cochlear implant surgery,” J. Med. Devices 3 (1), 011001 (2009b).Google Scholar
39. Zhang, J., Wei, W., Ding, J., Roland, J. T., Manolidis, S. and Simaan, N., “Inroads toward robot-assisted cochlear implant surgery using steerable electrode arrays,” Otology Neurotology 1, 11991206 (2010).Google Scholar
40. Zhang, J., Xu, K., Simaan, N. and Manolidis, S., “A Pilot Study of Robot-Assisted Cochlear Implant Surgery Using Steerable Electrode Arrays,” Medical Image Computing and Computer-Assisted Intervention : MICCAI . . . International Conference on Medical Image Computing and Computer-Assisted Intervention vol. 9 (Pt 1) (Copenhagen, Denmark, Jan. 2006) 33–40.Google Scholar
Supplementary material: Image

Pile supplementary material

Figure S1

Download Pile supplementary material(Image)
Image 830.2 KB
Supplementary material: Image

Pile supplementary material

Figure S2

Download Pile supplementary material(Image)
Image 100.9 KB
Supplementary material: Image

Pile supplementary material

Figure S3

Download Pile supplementary material(Image)
Image 177.2 KB
Supplementary material: Image

Pile supplementary material

Figure S4

Download Pile supplementary material(Image)
Image 145 KB
Supplementary material: Image

Pile supplementary material

Figure S5

Download Pile supplementary material(Image)
Image 588.4 KB
Supplementary material: Image

Pile supplementary material

Figure S6

Download Pile supplementary material(Image)
Image 58.9 KB
Supplementary material: Image

Pile supplementary material

Figure S7

Download Pile supplementary material(Image)
Image 45.9 KB
Supplementary material: Image

Pile supplementary material

Figure S8

Download Pile supplementary material(Image)
Image 27.7 KB
Supplementary material: Image

Pile supplementary material

Figure S9

Download Pile supplementary material(Image)
Image 39.2 KB

Pile supplementary material

Media 1

Download Pile supplementary material(Video)
Video 7.9 MB
Supplementary material: PDF

Pile supplementary material

Pile supplementary material 1

Download Pile supplementary material(PDF)
PDF 2.3 MB
Supplementary material: File

Pile supplementary material

Pile supplementary material 2

Download Pile supplementary material(File)
File 97.9 KB