No CrossRef data available.
Published online by Cambridge University Press: 27 August 2025
Capturing dynamic targets is particularly challenging for either rigid or soft grippers, as impact buffering should be completed in a short time to ensure the reliability of the robotic system. At collision onset, to deal with relatively low contact forces, adopting low stiffness and damping can effectively mitigate the rebound of the dynamic targets. As the contact area and forces increase, employing high stiffness and damping becomes necessary for absorbing high energy. This paper proposed a novel robotic gripper whose stiffness and damping follow a predefined profile “low stiffness and damping for low impact and high stiffness and damping for high impact.” The variable effects of impact buffering and energy dissipation in a collision process were modeled and analyzed. Then, a passive variable stiffness and damping regulator (P-VSDR) was developed where tendons and pulleys are used to generate a nonlinear motion from a linear spring-damper unit. The contact dynamics model of the robotic gripper equipped with P-VSDR was established. Simulated and experimental results show that this gripper enables reliable capture of dynamic targets with different velocities.