Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-08-28T11:28:16.567Z Has data issue: false hasContentIssue false

Robotic gripper for dynamic capture using passive variable stiffness and damping regulator (P-VSDR)

Published online by Cambridge University Press:  27 August 2025

Shangkui Yang
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, P.R. China
Zhibin Song
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, P.R. China
David T. Branson
Affiliation:
Advanced Manufacturing Technology Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
Tao Sun
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, P.R. China
Jian S. Dai
Affiliation:
Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Southern University of Science and Technology, Shenzhen, P.R. China
Rongjie Kang*
Affiliation:
Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, P.R. China
*
Corresponding author: Rongjie Kang; Email: rjkang@tju.edu.cn

Abstract

Capturing dynamic targets is particularly challenging for either rigid or soft grippers, as impact buffering should be completed in a short time to ensure the reliability of the robotic system. At collision onset, to deal with relatively low contact forces, adopting low stiffness and damping can effectively mitigate the rebound of the dynamic targets. As the contact area and forces increase, employing high stiffness and damping becomes necessary for absorbing high energy. This paper proposed a novel robotic gripper whose stiffness and damping follow a predefined profile “low stiffness and damping for low impact and high stiffness and damping for high impact.” The variable effects of impact buffering and energy dissipation in a collision process were modeled and analyzed. Then, a passive variable stiffness and damping regulator (P-VSDR) was developed where tendons and pulleys are used to generate a nonlinear motion from a linear spring-damper unit. The contact dynamics model of the robotic gripper equipped with P-VSDR was established. Simulated and experimental results show that this gripper enables reliable capture of dynamic targets with different velocities.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Yang, C., Walker, I. D., Branson, D. T., Dai, J. S., Sun, T. and Kang, R., “A multi-tentacle gripper for dynamic capture,” IEEE Trans. Robot. 40, 42844300 (2024).10.1109/TRO.2024.3454437CrossRefGoogle Scholar
Laschi, C., Mazzolai, B. and Cianchetti, M., “Soft robotics: Technologies and systems pushing the boundaries of robot abilities,” Sci. Robot. 1(1), eaah3690 (2016).10.1126/scirobotics.aah3690CrossRefGoogle ScholarPubMed
Zhang, Y., Zhang, W., Gao, P., Zhong, X. and Pu, W., “Finger-palm synergistic soft gripper for dynamic capture via energy harvesting and dissipation,” Nat. Commun. 13(1), 7700 (2022).10.1038/s41467-022-35479-9CrossRefGoogle ScholarPubMed
Xie, Z., Yuan, F., Liu, J., Tian, L., Chen, B., Fu, Z., Mao, S., Jin, T., Wang, Y., He, X., Wang, G., Mo, Y., Ding, X., Zhang, Y., Laschi, C. and Wen, L., “Octopus-inspired sensorized soft arm for environmental interaction,” Sci. Robot. 8(84), eadh7852 (2023).10.1126/scirobotics.adh7852CrossRefGoogle ScholarPubMed
Kuo, P. H. and Deshpande, A. D., “Muscle-tendon units provide limited contributions to the passive stiffness of the index finger metacarpophalangeal joint,” J. Biomech. 45(15), 25312538 (2012).10.1016/j.jbiomech.2012.07.034CrossRefGoogle Scholar
Song, Z., Lan, S. and Dai, J. S., “A new mechanical design method of compliant actuators with non-linear stiffness with predefined deflection-torque profiles,” Mech. Mach. Theory 133, 164178 (2019).10.1016/j.mechmachtheory.2018.09.020CrossRefGoogle Scholar
Hu, X., Song, Z. and Ma, T., “Novel design method for nonlinear stiffness actuator with user-defined deflection-torque profiles,” Mech. Mach. Theory 146, 103712 (2020).10.1016/j.mechmachtheory.2019.103712CrossRefGoogle Scholar
Liu, F., Sun, F., Fang, B., Li, X., Sun, S. and Liu, H., “Hybrid robotic grasping with a soft multimodal gripper and a deep multistage learning scheme,” IEEE Trans. Robot. 39(3), 23792399 (2023).10.1109/TRO.2023.3238910CrossRefGoogle Scholar
Jia, Y. B., Gardner, M. and Mu, X., “Batting an in-flight object to the target,” Int. J. Robot. Res. 38(4), 451485 (2019).10.1177/0278364918817116CrossRefGoogle Scholar
Marturi, N., Kopicki, M., Rastegarpanah, A., Rajasekaran, V., Adjigble, M., Stolkin, R. and Bekiroglu, Y., “Dynamic grasp and trajectory planning for moving objects,” Auton. Robot. 43, 12411256 (2019).10.1007/s10514-018-9799-1CrossRefGoogle Scholar
Kim, S., Shukla, A. and Billard, A., “Catching objects in flight,” IEEE Trans. Robot. 30(5), 10491065 (2014).10.1109/TRO.2014.2316022CrossRefGoogle Scholar
Vidyadhara, B. V., Tony, L. A., Gadde, M. S., Jana, S., Varun, V. P., Bhise, A. A., Sundaram, S. and Ghose, D., “Design and integration of a drone based passive manipulator for capturing flying targets,” Robotica 40(7), 23492364 (2022).10.1017/S0263574721001673CrossRefGoogle Scholar
Huang, P., Wang, D., Meng, Z. and Liu, Z., “Post-capture attitude control for a tethered space robot–target combination system,” Robotica 33(4), 898919 (2015).10.1017/S0263574714000617CrossRefGoogle Scholar
Stroppa, F., Majeed, F. J., Batiya, J., Baran, E. and Sarac, M., “Optimizing soft robot design and tracking with and without evolutionary computation: An intensive survey,” Robotica 42(8), 28482884 (2024).10.1017/S0263574724001152CrossRefGoogle Scholar
Rus, D. and Tolley, M. T., “Design, fabrication and control of soft robots,” Nature 521(7553), 467475 (2015).10.1038/nature14543CrossRefGoogle ScholarPubMed
Michael, T. T., Robert, F. S., Kevin, C. G., Robert, J. W. and George, M. W., “A resilient, untethered soft robot,” Soft Robot. 1(3), 213223 (2014).Google Scholar
Lee, Y., Song, W. J. and Sun, J. Y., “Hydrogel soft robotics,” Mater. Today Phys. 15, 100258 (2020).10.1016/j.mtphys.2020.100258CrossRefGoogle Scholar
Wallin, T. J., Pikul, J. and Shepherd, R. F., “3D printing of soft robotic systems,” Nat. Rev. Mater. 3(6), 84100 (2018).10.1038/s41578-018-0002-2CrossRefGoogle Scholar
Chen, B., Chen, Z., Chen, X., Mao, S., Pan, F., Li, L., Liu, W., Min, H., Ding, X., Sun, F. and Wen, L., “Teleoperation of an anthropomorphic robot hand with a metamorphic palm and tunable-stiffness soft fingers,” Soft Robot. 11(3), 508518 (2024).10.1089/soro.2023.0062CrossRefGoogle ScholarPubMed
Li, G., Wong, T. W., Shih, B., Guo, C., Wang, L., Liu, J., Wang, T., Liu, X., Yan, J., Wu, B., Yu, F., Chen, Y., Liang, Y., Xue, Y., Wang, C., He, S., Wen, L., Tolley, M. T., Zhang, A. M., Laschi, C. and Li, T., “Bioinspired soft robots for deep-sea exploration,” Nat. Commun. 14(1), 7097 (2023).10.1038/s41467-023-42882-3CrossRefGoogle ScholarPubMed
Chen, R., Yuan, Z., Guo, J., Bai, L., Zhu, X., Liu, F., Pu, H., Xin, L., Peng, Y., Luo, J., Wen, L. and Sun, Y., “Legless soft robots capable of rapid, continuous, and steered jumping,” Nat. Commun. 12(1), 7028 (2021).10.1038/s41467-021-27265-wCrossRefGoogle ScholarPubMed
Trivedi, D., Rahn, C. D., Kier, W. M. and Walker, I. D., “Soft robotics: Biological inspiration, state of the art, and future research,” Appl. Bionics Biomech. 5(3), 99117 (2008).10.1080/11762320802557865CrossRefGoogle Scholar
Sinatra, N. R., Teeple, C. B., Vogt, D. M., Parker, K. K., Gruber, D. F. and Wood, R. J., “Ultragentle manipulation of delicate structures using a soft robotic gripper,” Sci. Robot. 4(33), eaax5425 (2019).10.1126/scirobotics.aax5425CrossRefGoogle ScholarPubMed
Lin, Y., Zhang, C., Tang, W., Jiao, Z., Wang, J., Wang, W., Zhong, Y., Zhu, P., Hu, Y., Yang, H. and Zou, J., “A bioinspired stress-response strategy for high-speed soft grippers,” Adv. Sci. 8(21), 2102539 (2021).10.1002/advs.202102539CrossRefGoogle ScholarPubMed
Yang, J., Ren, C., Yang, C., Wang, Y., Wan, S. and Kang, R., “Design of a flexible capture mechanism inspired by sea anemone for non-cooperative targets,” Chin. J. Mech. Eng. 34(1), 77 (2021).10.1186/s10033-021-00594-zCrossRefGoogle Scholar
Yang, S., Zhou, Y., Walker, I. D., Yang, C., Branson, D. T., Song, Z., Dai, J. and Kang, R., “Dynamic capture using a traplike soft gripper with stiffness anisotropy,” IEEE-ASME Trans. Mechatron. 28(3), 13371346 (2022).10.1109/TMECH.2022.3219108CrossRefGoogle Scholar
Shintake, J., Cacucciolo, V., Floreano, D. and Shea, H., “Soft robotic grippers,” Adv. Mater. 30(29), 1707035 (2018).10.1002/adma.201707035CrossRefGoogle Scholar
Haibin, Y., Cheng, K., Junfeng, L. and Guilin, Y., “Modeling of grasping force for a soft robotic gripper with variable stiffness,” Mech. Mach. Theory 128, 254274 (2018).10.1016/j.mechmachtheory.2018.05.005CrossRefGoogle Scholar
Yang, Y., Chen, Y., Li, Y., Chen, M. Z. and Wei, Y., “Bioinspired robotic fingers based on pneumatic actuator and 3D printing of smart material,” Soft Robot. 4(2), 147162 (2017).10.1089/soro.2016.0034CrossRefGoogle ScholarPubMed
Liu, Y., Liu, X., Yuan, Z. and Liu, J., “Design and analysis of spring parallel variable stiffness actuator based on antagonistic principle,” Mech. Mach. Theory 140, 4458 (2019).10.1016/j.mechmachtheory.2019.05.016CrossRefGoogle Scholar
Yang, C., Geng, S., Walker, I. D., Branson, D. T., Liu, J., Dai, J. S. and Kang, R., “Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness,” Int. J. Robot. Res. 39(14), 16201634 (2020).10.1177/0278364920913929CrossRefGoogle Scholar
Yang, S., Chen, P., Wang, D., Yu, Y. and Liu, Y., “Design and analysis of a 2-DOF actuator with variable stiffness based on leaf springs,” J. Bionic Eng. 19(5), 13921404 (2022).10.1007/s42235-022-00205-0CrossRefGoogle Scholar
Hussain, I., Albalasie, A., Awad, M. I., Tamizi, K., Niu, Z., Seneviratne, L. and Gan, D., “Design and control of a discrete variable stiffness actuator with instant stiffness switch for safe human-robot interaction,” IEEE Access 9, 118215118231 (2021).10.1109/ACCESS.2021.3105587CrossRefGoogle Scholar
Fu, J., Yu, Z., Lin, H., Zheng, L. and Gan, D., “A novel variable stiffness compliant robotic link based on discrete variable stiffness units for safe human–robot interaction,” J. Mech. Robot. 16(1), 014501 (2024).10.1115/1.4056957CrossRefGoogle Scholar
Kim, S. and Billard, A., “Estimating the non-linear dynamics of free-flying objects,” Robot. Auton. Syst. 60(9), 11081122 (2012).10.1016/j.robot.2012.05.022CrossRefGoogle Scholar
Wang, W., Wang, J., Luo, Y., Wang, X. and Song, H., “A survey on force sensing techniques in robot-assisted minimally invasive surgery,” IEEE Trans. Haptics 16(4), 702718 (2023).10.1109/TOH.2023.3329172CrossRefGoogle ScholarPubMed
Liu, Y., Luo, K., Wang, S., Song, X., Zhang, Z., Tian, Q. and Hu, H., “A soft and bistable gripper with adjustable energy barrier for fast capture in space,” Soft Robot. 10(1), 7787 (2023).10.1089/soro.2021.0147CrossRefGoogle ScholarPubMed
Jia, Y. B., “Three-dimensional impact: Energy-based modeling of tangential compliance,” Int. J. Robot. Res. 32(1), 5683 (2013).10.1177/0278364912457832CrossRefGoogle Scholar
Zhao, P., Liu, J., Li, Y. and Wu, C., “A spring-damping contact force model considering normal friction for impact analysis,” Nonlinear Dyn. 105, 14371457 (2021).10.1007/s11071-021-06660-4CrossRefGoogle Scholar
Machado, M., Moreira, P., Flores, P. and Lankarani, H. M., “Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory,” Mech. Mach. Theory 53, 99121 (2012).10.1016/j.mechmachtheory.2012.02.010CrossRefGoogle Scholar
Ramírez, R., Pöschel, T., Brilliantov, N. V. and Schwager, T., “Coefficient of restitution of colliding viscoelastic spheres,” Phys. Rev. E 60(4), 4465 (1999).10.1103/PhysRevE.60.4465CrossRefGoogle ScholarPubMed
Hunt, K. and Crossley, F., “Coefficient of restitution interpreted as damping in vibroimpact,” J. Appl. Mech. 42(2), 440 (1975).10.1115/1.3423596CrossRefGoogle Scholar
Flores, P., “Contact mechanics for dynamical systems: A comprehensive review,” Multibody Syst. Dyn 54, 151 (2022).10.1007/s11044-021-09803-yCrossRefGoogle Scholar
Walker, I. D., “Continuous backbone “continuum” robot manipulators,” Int Sch Res Notices 2013(1), 726506 (2013).Google Scholar
Dai, J. S., “Euler–Rodrigues formula variations, quaternion conjugation and intrinsic connections,” Mech. Mach. Theory 92, 144152 (2015).10.1016/j.mechmachtheory.2015.03.004CrossRefGoogle Scholar
Yang, C., Kang, R., Branson, D. T., Chen, L. and Dai, J. S., “Kinematics and statics of eccentric soft bending actuators with external payloads,” Mech. Mach. Theory 139, 526541 (2019).10.1016/j.mechmachtheory.2019.05.015CrossRefGoogle Scholar
Ding, X., Yang, Y. and Dai, J. S., “Topology and kinematic analysis of color-changing ball,” Mech. Mach. Theory 46(1), 6781 (2011).10.1016/j.mechmachtheory.2010.08.010CrossRefGoogle Scholar
Rone, W. S. and Ben-Tzvi, P., “Continuum robot dynamics utilizing the principle of virtual power,” IEEE Trans. Robot. 30(1), 275287 (2013).10.1109/TRO.2013.2281564CrossRefGoogle Scholar
Liu, Z., Cai, Z., Peng, H., Zhang, X. and Wu, Z., “Morphology and tension perception of cable-driven continuum robots,” IEEE-ASME Trans. Mechatron. 28(1,), 314325 (2022).10.1109/TMECH.2022.3198093CrossRefGoogle Scholar
Supplementary material: File

Yang et al. supplementary material 1

Yang et al. supplementary material
Download Yang et al. supplementary material 1(File)
File 1.1 MB
Supplementary material: File

Yang et al. supplementary material 2

Yang et al. supplementary material
Download Yang et al. supplementary material 2(File)
File 3.9 MB
Supplementary material: File

Yang et al. supplementary material 3

Yang et al. supplementary material
Download Yang et al. supplementary material 3(File)
File 2 MB
Supplementary material: File

Yang et al. supplementary material 4

Yang et al. supplementary material
Download Yang et al. supplementary material 4(File)
File 2.5 MB