Published online by Cambridge University Press: 07 August 2013
Singularity-free workspace is a very important criterion for the design of manipulators, especially for parallel manipulators which are well known for their limited workspace and complex singularities. This paper studies geometric parameters and dexterity measures that affect the size of a singularity-free joint space and proposes methods for the development of 6-DOF Stewart–Gough parallel manipulators that have better singularity-free joint space. With a local dexterity measure as the objective function, a systematic method is employed to search for the design with a maximal singularity-free joint space. The related workspaces are also investigated. It is shown that the workspace is not proportional to the size of the joint space and that manipulators with a larger singularity-free workspace usually have relatively poor dexterity.