Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T18:12:33.923Z Has data issue: false hasContentIssue false

Smart wheelchair perception using odometry, ultrasound sensors, and camera

Published online by Cambridge University Press:  01 March 2009

O. Horn*
Affiliation:
Laboratoire d'Automatique des Systèmes Coopératifs (L.A.S.C.), 7 rue Marconi, 57070 METZ, France.
M. Kreutner
Affiliation:
Laboratoire d'Automatique des Systèmes Coopératifs (L.A.S.C.), 7 rue Marconi, 57070 METZ, France.
*
*Corresponding author. E-mail: horn@lasc.univ-metz.fr.

Summary

This paper deals with the perception mode of smart wheelchairs. First we evoke the many mobility aid prototypes developed in rehabilitation robotics by considering the point of view of perception. Then we describe the localization mode of the VAHM**. We show how the odometric, ultrasound, and vision sensors are used in a complementary way in order to locate the wheelchair in its known environment. The mode of adjustment of the odometric position by the least-squared method using ultrasonic measurements is detailed. Then the use of vision to perceive the vertical segments of the environment so as to refine the orientation is presented. The results of the tests carried out on the wheelchair are given and commented.

Type
Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Argyros, A., Georgiadis, P., Trahanias, P. and Tsakiris, D., “Semi-autonomous navigation of a robotic wheelchair,” J. Intell. Robot. Syst. 34, 315329 (2002).CrossRefGoogle Scholar
2.Miller, D. P. and Slack, M. G., “Design and testing a low-cost robotic wheelchair prototype,” Autonomous Robot, 2, 7788 (1995).CrossRefGoogle Scholar
3.Yanko, H. A., Shared User-Computer Control of a Robotic Wheelchair System Ph.D. Thesis (Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, University of Massachusetts, Lowell, Sep. 2000).Google Scholar
4.Simpson, R., LoPresti, E., Hayashi, S., Nourbakhsh, I. and Miller, D., “The smart wheelchair component system,” J. Rehabil. Res. Dev. 41 (3B), 429442 (Jun. 2004).CrossRefGoogle ScholarPubMed
5.Borenstein, J. and Feng, L., “Measurement and correction of systematic odometry errors in mobile robots,” IEEE Trans. Robot. Automation 12 (6), 869880 (Dec. 1996).CrossRefGoogle Scholar
6.Moon, I., Joung, S. and Kum, Y., “Safe and Reliable Intelligent Wheelchair Robot With Human Robot Interaction,” Proceedings of the IEEE International Conference on Robotics and Automation, Washington (May 2002) pp. 3595–3600.Google Scholar
7.Levine, S. P., Bell, D. A., Jaros, L. A., Simpson, R. C., Koren, Y., “The NavChair assistive wheelchair navigation system,” IEEE Trans. Rehabil. Eng. 7 (4), 443451 (Dec. 1999).CrossRefGoogle ScholarPubMed
8.Castillo, G. Del, Vision-Based, Autonomous, Pivoting Wheelchair With Obstacle Detection Capability Ph.D. Thesis (University of Notre Dame, Notre Dame, Indiana, USA, May 2004).Google Scholar
9.Luo, R. C., Chen, T. M. and Lin, M. H., “Automatic Guided Intelligent Wheelchair System Using Hierarchical Grey-Fuzzy Motion Decision-Making Algorithms,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju, Korea (1999) pp. 900–905.Google Scholar
10.Pires, G. and Nunes, U., “A wheelchair steered through voice commands and assisted by a reactive fuzzy-logic controller,” J. Intell. Robot. Syst. 34, 301314 (2002).CrossRefGoogle Scholar
11.Bonci, A., Longhi, S., Monteriu, A. and Vaccarini, M., “Navigation system for a smart wheelchair,” J. Zhejiang Univ. Sci. 6A (2), 110117 (2005).CrossRefGoogle Scholar
12.Gomi, T. and Griffith, A., “Developing Intelligent Wheelchairs for the Handicapped,” In: Assistive Technology and Artifical Intelligence (Mittal, V. O., Yanco, H. A., Aronis, J. M., Simpson, R. C., eds.) (Springer Verlag, 1998) pp. 150178.Google Scholar
13.Demeester, E., Nuttin, M., Vanhooydonck, D. and Van Bruusel, H., “A Model-based, Probabilistic Framework for Plan Recognition in Shared Wheelchair Control: Experiments and Evaluation,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems 2003, Las Vegas, USA, pp. 1456–1461.Google Scholar
14.Kuno, Y., Murakami, Y. and Shimada, N., “User and Social Interfaces by Observing Human Faces for Intelligent Wheelchairs,” ACM International Conference, Proceeding of Workshop on Perceptive User Interfaces, Orlando, Florida, USA (2001) pp. 1–4.Google Scholar
15.Lankenau, A., Rofer, T. and Krieg-Bruckner, B., “Self localization in large-scale environments for the Bremen autonomous wheelchair,” Spatial Cognition III. Lecture Notes in Artificial Intelligence 2685, 2003, pp. 34–61.CrossRefGoogle Scholar
16.Adachi, Y., Tsunenari, H., Matsumoto, Y. and Ogasawara, T., “Guide Robot's Navigation Based on Attention Estimation Using Gaze Information,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan (2004) pp. 540–545.Google Scholar
17.Zhou, C., Wei, Y. and Tan, T, “Mobile Robot Self-Localization Based on Global Visual Appearance Features,” Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan (2003) pp. 1271–1276.Google Scholar
18.Diaz, S. V., Rodriguez, C. A., Diaz del Rio, F., Balcells, A. C. and Muniz, D. C., “Tetranauta: A Intelligent Wheelchair for Users with very Severe Mobility Restrictions,” Proceedings of the International Conference on Control Applications, Glasgow, Scotland UK. (2002) pp. 778–783.Google Scholar
19.Garcia, J. C. G., Romera, M. M., Quintas, M. M. and Urena, J. U., “Positioning and Localization System for Autonomous Wheelchairs,” Proceedings of the IEEE Industrial Electronics Society, Orlando, Florida, USA (Nov. 2002) pp. 1555–1560.Google Scholar
20.Bourhis, G., Horn, O., Habert, O. and Pruski, A., “The VAHM project: Autonomous vehicle for people with motor disabilities,” IEEE Robot. Automation Mag., Special Issue on Wheelchairs in Europe 7 (1), 2128 (Mar. 2001).Google Scholar
21.Kreutner, M., Perception multisensorielle pour véhicule autonome dédié aux personnes handicapées moteurs These de doctorat de l' Université de Metz, University of Metz, France (Sep. 2004).Google Scholar
22.Hoppenot, P. and Colle, E., “Real-time localisation of a low-cost mobile robot with poor ultrasonic data,” IFAC J. Control Eng. Pract. 6, 925934 (1998).CrossRefGoogle Scholar
23.Kim, C. H., Juang, J. H. and Kim, B. K., “Design of an Intelligent Wheelchair for the Motor Disbled,” In: Advances in Rehabilitation Robotics, Lecture Notes in Control and Information Sciences (Bien, Z. Z. and Stefanov, , eds.) (Springer Berlin/Heidelberg 2004) pp. 299310.Google Scholar
24.Jetto, L., Longhi, S. and Venturini, G., “Development and experimental validation of an adaptive extended kalman filter for the localization of mobile robots,” IEEE Trans. Robot. Automation 15 (2), 219229 (Apr. 1999).CrossRefGoogle Scholar
25.Schilling, K., Roth, H., Lieb, R. and Stuzle, H., “Sensors to Improve the Safety for Wheelchair Users,” Proceedings of the 3rd Annual TIDE-Technology for Inclusive Design and Equality-Congress, 1998, Helsinki, Finland, pp. 327–331.Google Scholar
26.Gribble, W. S., Browning, R. L., Hewett, M., Emilio, Remolina and Kuipers, B. J., “Integrating Vision and Spatial Reasoning for Assistive Navigation,” In: Assistive Technology and Artifical Intelligence (Mittal, V. O., Yanco, H. A., Aronis, J. M., Simpson, R. C., eds.) (Springer Verlag, 1998).Google Scholar
27.Horn, O. and Courcelle, A., “Interpretation of ultrasonic readings for autonomous robot localization,” J. Intell. Robot. Syst. 39, 265285 (2004).CrossRefGoogle Scholar
28.Mallet, P. and Pergandi, J. M., “Towards smart wheelchairs,” AAATE 2005, Lille, France, pp. 328335.Google Scholar
29.Kreutner, M. and Horn, O., “Co-operation between ultrasound and monocular vision for the localization of a mobile robot,” CESA'2003, Lille, France (2003).Google Scholar
30.Borenstein, J. and Koren, Y., “Noise Rejection for Ultrasonic Sensors in Mobile Robot Application,” Proceedings of the IEEE International Conference on Robotics and Automation, (Aut 1992) pp. 1727–1732.Google Scholar