Article contents
Stable Calibrations of Six-DOF Serial Robots by Using Identification Models with Equalized Singular Values
Published online by Cambridge University Press: 15 March 2021
Summary
In typical calibration methods (kinematic or non-kinematic) for serial industrial robot, though measurement instruments with high resolutions are adopted, measurement configurations are optimized, and redundant parameters are eliminated from identification model, calibration accuracy is still limited under measurement noise. This might be because huge gaps still exist among the singular values of typical identification Jacobians, thereby causing the identification models ill conditioned. This paper addresses such problem by using new identification models established in two steps. First, the typical models are divided into the submodels with truncated singular values. In this way, the unknown parameters corresponding to the abnormal singular values are removed, thereby reducing the condition numbers of the new submodels. However, these models might still be ill conditioned. Therefore, the second step is to further centralize the singular values of each submodel by using a matrix balance method. Afterward, all submodels are well conditioned and obtain much higher observability indices compared with those of typical models. Simulation results indicate that significant improvements in the stability of identification results and the identifiability of unknown parameters are acquired by using the new identification submodels. Experimental results indicate that the proposed calibration method increases the identification accuracy without incurring additional hardware setup costs to the typical calibration method.
Keywords
- Type
- Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press
References
- 8
- Cited by