Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T15:59:04.376Z Has data issue: false hasContentIssue false

A stereo vision-based obstacle detecting method for mobile robot navigation

Published online by Cambridge University Press:  09 March 2009

Yong C. Cho
Affiliation:
Department of Precision Engineering and Mechatronics, KAIST, 373–1, Kusong-dong, Yusong-gu, Taejon, 305–701 (Korea)
Hyung S. Cho
Affiliation:
Department of Precision Engineering and Mechatronics, KAIST, 373–1, Kusong-dong, Yusong-gu, Taejon, 305–701 (Korea)

Summary

This paper presents a computationally simple stereo vision method for detecting useful features of obstacles on the ground relevant to a mobile robot's navigation in an indoor environment. Enhanced time efficiency and reliability is achieved by introducing a geometrical image transformation and a frame-wise iterative edge image comparison scheme. The image transformation used in this paper relates each constant disparity value to an oblique plane at an elevation from the floor. The stereo correspondence method is devised by implementing a frame-wise AND operation based upon edge orientation and a subsequent pixel wise intensity correlation checking. This method is efficient in terms of computation time and capable of identifying isodisparity points, so that the height information of all the obstacle points above the floor can be determined. The obtained disparities are recorded on a local map to give complete obstacle features for mobile robot's path planning. Through a series of experiments performed under various environmental conditions, it is found that the proposed method can effectively be applied for locating obstacles of various heights in indoor navigation of mobile robots.

Type
Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brooks, R.A., “A robust layered control system for a mobile robotIEEE J. Robotics and Automation RA-2, No. 1, 1423 (1986).CrossRefGoogle Scholar
2. Onoguchi, K., Watanabe, M., Okamoto, Y., kumo, Y. and Asada, H., “Visual navigation system using a multiinformation local mapProc. IEEE Int. Conf. on Robotics and Automation, Cincinnati, Ohio (05, 1990) pp. 767774.CrossRefGoogle Scholar
3. Frohn, H. and Seelen, W.V., “VISOCAR: An autonomous industrial Transport Vehicle guided by visual navigationProc. IEEE int. Conf. on Robotics and Automation (1989) pp. 11551159.Google Scholar
4. Borenstein, J. and Koren, Y., “Obstacle avoidance with ultrasonic sensorsIEEE J. Robotics and Automation RA-4, No. 213218 (1988).CrossRefGoogle Scholar
5. Elfes, A., “Sonar-based real world mapping and navigationIEEE J. Robotics and Automation RA-3, 11511156 (1987).Google Scholar
6. Dunlary, R.T., “Obstacle avoidance preception processing for the autonomous land vehicleProc. IEEE. Int. Conf on Robotics and Automation, Philadelphia, PA (1988) pp. 912917.Google Scholar
7. Freyberger, Kampmann, P. and Schmidt, G. K., “Constructing Maps for indoor navigation of a mobile robot by using an active 3D ranging imaging deviceProc., IEEE, int. Workshop on Intelligent Robotics and Systems IROS'90 (1990) pp. 143148.Google Scholar
8. Takeno, J., “Report on Development of a collision avoidance robotJapan industrial Robot Association (JIRA), Robot No. 71, 8292 (1989).Google Scholar
9. Shirai, Y., Three-Dimensional Computer Vision (springer-Verlag New York, 1987).CrossRefGoogle Scholar
10. Faugeras, O.D., “A few steps toward artificial 3-D vision,” Robotics Science (Edited by Brady, M.) (The MIT Press, Cambridge, 1989) pp. 39137.Google Scholar
11. Grimson, W.E.L., “Computational experiments with feature based stereo algorithmIEEE Trans., Pattern Anal. Mach. Intell. 7, 1734 (1985).CrossRefGoogle ScholarPubMed
12. Ohta, Y. & Kanade, T., “Stereo by intra-and interscanline search using dynamic programming”, IEEE Trans., Pattern Anal. Mach. Intell. 7, No. 2, 139154 (1985).CrossRefGoogle ScholarPubMed
13. Kim, Y.C. and Aggarwal, J.K., “Positioning three-dimensional objects using stereo visionIEEE J. Robotics and Automation RA-3, 360373 (1987).Google Scholar
14. Dhond, U. and Aggawal, J.K., “Structure from stereo - A ReviewIEEE, Trans., SMC 19, No. 6, 14891510 (1989).Google Scholar
15. Achache, N. and Faverjon, B., “Efficient registration of stereo images by matching graph description of edge segments”, Int. J. Computer Vision 1, No. 2, 107131 (1989).Google Scholar
16. Vincent, A.R. de Saint, “A 3D perception system for the mobile robot HilareProc., Int. Conf Robotics and Automation, San Francisco, CA (04, 1986) pp. 11051111.Google Scholar
17. Triendl, E. and Kriegman, D.J., “Stereo vision and navigation within buildingsProc., IEEE Int. Conf., on Robotics and Automation, Raleigh, NC (03, 1987) pp. 264271.Google Scholar
18. Morave, H.P., “The stanford cart and the CMU roverProc. IEEE 71, No. 7, 872884 (1983).CrossRefGoogle Scholar
19. Inigo, R.M., Mcvery, E.S., Berger, B.J. and Mirtz, M.J., “Machine vision applied to vehicle guidanceIEEE Trans., Pattern Anal. Mach. Intell. 6, No. 6, 820826 (1984).CrossRefGoogle ScholarPubMed
20. Watanabe, M., “Obstacle detection method for mobile robot with stereo vision”, Proc. of the 5th SCIA (1987) pp. 325334.Google Scholar
21. Feni, F., Gross, E., Sandini, G. and Magrassi, M., “A stereo vision system for real time obstacle avoidance in unknown environmentProc. IEEE, Int., Workshop on Intelligent Robotics and Systems IROS'90 (1990) pp. 703708.Google Scholar
22. Tsuji, S., Zheng, J. and Asada, M., “Stereo vision of a mobile robot: World constraint for image matching and interpretationProc. IEEE, Int. Conf. Robotics and Automation, San Francisco, CA (04, 1986) pp. 15941599.Google Scholar
23. Storjohann, K., Zielke, T., Mallot, H.A. and Seelen, W. V., “Visual obstacle detection for automatically guided vehiclesProc., IEEE Int. Conf, on Robotics and Automation, Cincinnati Ohio (05 1990) pp. 761766.CrossRefGoogle Scholar
24. Krotkov, E., Henriksen, K. and Kones, R., “Stereo ranging with verging camerasIEEE Trans., Pattern Anal. Mach. Intell. 12, No. 12, 12001205 (1990).CrossRefGoogle Scholar
25. Kanatani, K.Constraints on length and angleComputer Graphics and Image Processing 41, 2842 (1988).CrossRefGoogle Scholar
26. Cho, Y.C., “A study on a stereo vision algorithm using the inverse perspective transformation” Ph.D. Dissertation (Korea Advanced Institutes of Science and Technology, 1992).Google Scholar
27. Liu, Y., Huang, T.S. and Faugeras, O.D., “Determination of camera location from 3-D line and point correspondencesIEEE Trans. on Pattern Anal. Mach. Intell. 12, No. 1, 2835 (01, 1990).CrossRefGoogle Scholar
28. Rosenfeld, A. and Kak, A.C., Digital Picture Processing (Academic Press, New York, 1982).Google Scholar