Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T12:55:04.835Z Has data issue: false hasContentIssue false

Stiffness estimation of a parallel manipulator using image analysis and camera calibration techniques

Published online by Cambridge University Press:  19 November 2012

Abraham Gonzalez-Hernandez*
Affiliation:
Instituto Politecnico Nacional, CICATA Unidad Queretaro, Cerro Blanco 141, Colinas del Cimatario, 76090 Queretaro, Mexico
Eduardo Castillo-Castaneda
Affiliation:
Instituto Politecnico Nacional, CICATA Unidad Queretaro, Cerro Blanco 141, Colinas del Cimatario, 76090 Queretaro, Mexico
*
*Corresponding author. E-mail: ecastillo@ipn.mx

Summary

This work presents a methodology using image analysis to estimate the experimental stiffness of a parallel robot, Parallix LKF-2040, a 3-degree-of-freedom manipulator. The proposed methodology has a simple implementation and can be applied to different architectures of parallel robots. This methodology uses image analysis and camera calibration techniques to estimate compliant displacements of mobile platform produced by several loads at the end effector level, and calculate stiffness in a specific position of mobile platform. Experimental results are presented for different positions within the workspace.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Castillo, E., “Development of parallel robots for teaching Mechatronics and Robotics”, Final report, project sponsored by ICTY-DF, Mexico (2008).Google Scholar
2.Tsai, L.-W., Robot Analysis: The Mechanics of Serial and Parallel Manipulators (Jonh Wiley, 1999).Google Scholar
3.Gosselin, C. M., “Stiffness mapping for parallel manipulators,IEEE Trans. Robot. Autom. 6, 377382 (1990).Google Scholar
4.Clinton, C. M. and Zhang, Y G., “Stiffness modeling of a Stewart platform-based milling machine,Trans. North Am. Manuf. Res. Inst. SME, 25, 335340 (1997).Google Scholar
5.Rebeck, E. and Zhang, G., “A method for evaluating the stiffness of a Hexapod machine tool support structure,Int. J. Flexible Autom. Integr. Manuf. 7, 149165 (1999).Google Scholar
6.Huang, T., Zhao, X. and Whitehouse, D. J., “Stiffness estimation of a tripod-based parallel kinematic machine,IEEE Trans. Robot Automat. 18, 5058 (2002).Google Scholar
7.Ceccarelli, M. and Carbone, G., “A stiffness analysis for CaPaMan (Cassino Parallel Manipulator),Mech. Mach. Theory 37, 427439 (2002).Google Scholar
8.Carbone, G., Ceccarelli, M. and Teolis, M., “A Numerical Evaluation of the Stiffness of CaHyMan (Cassino Hybrid Manipulator),” In: Proceedings of 2nd Workshop on Computational Kinematics (CK 2001), Seoul (2001) pp. 145154.Google Scholar
9.Yoon, W. K., Suehiro, T., Tsumaki, Y. and Uchiyama, M., “Stiffness analysis and design of a compact modified delta parallel mechanism,Robotica 22, 463475 (2004).Google Scholar
10.Ceccarelli, M. and Carbone, G., “Numerical and Experimental Analysis of the Stiffness Performances of Parallel Manipulators,” Proceedings of the 2nd International Colloquium “Collaborative Research Centre 562,” Braunschweig, Germany (2005).Google Scholar
11.Company, O., Pierrot, F. and Fauroux, J. C., “A Method for Modeling Analytical Stiffness of a Lower Mobility Parallel Manipulator,” Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain (2005).Google Scholar
12.Corradini, C., Fauroux, J. C., Krut, S. and Company, O., “Evaluation of a 4 Degree of Freedom Parallel Manipulator Stiffness,” Proceedings of the 11th World Congress in Mechanism and Machine Science, Tianjin, China (2004).Google Scholar
13.Deblaise, D., Hernot, X. and Maurine, P., “A systematic analytical method of PKM stiffness matrix calculation,” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, USA (2006).Google Scholar
14.Majou, F.et al., “Parametric stiffness analysis of the Orthoglide,Mech. Mach. Theory 42, 296311 (2007).Google Scholar
15.Goncalves, R. S. and Mendes Carvalho, J. C., “Stiffness Analysis of Parallel Manipulator Using Matrix Structural Analysis,” In:Proceedings of the Second European Conference on Mechanism Science (EUCOMES 08) (2008) pp. 255262.Google Scholar
16.Pashkevich, A., Chablat, D. and Wenger, P., “Stiffness analysis of overconstrained parallel manipulators,Mech. Mach. Theory 44, 966982 (2009).Google Scholar
17.Najera, J., Aginaga, J. and Zabalza, I., “Análisis de Rigidez de Manipuladores Paralelos Basado en el Análisis de Sensibilidad. Aplicacion al 6-RUS,” Proceedings of the 9 Congreso Iberoamericano de Ingeniería Mecánica, Las Palmas de Gran Canaria, Spain (2009).Google Scholar
18.Lang, J., Pai, D. K. and Woodham, R. J., “Robotic acquisition of deformable models,IEEE Int. Conf. Robot. Autom. 1, 933938 (2002).Google Scholar
19.Bouguet, J. Y., “Camera calibration toolbox for Matlab,” Available at: http://www.vision.caltech.edu/bouguetj/calib_doc/ (2010). (Accessed 26 October 2012).Google Scholar
20.International Organization for Standardization, “ISO 5725-1:1994. Accuracy (Trueness and Precision) of Measurement Methods and Results – Part 1: General Principles and Definitions,” (ISO, Geneva, Switzerland, 1994).Google Scholar
21.Zhang, Z., “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22 (11), 13301334 (2000).CrossRefGoogle Scholar
22.Heikkila, J. and Silven, O., “A Four-Step Camera Calibration Procedure with Implicit Image Correction,” In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Jun. 17–19, 1997) pp. 1106–1112.Google Scholar