Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T07:50:30.839Z Has data issue: false hasContentIssue false

Suturing and tying knots assisted by a surgical robot system in laryngeal MIS

Published online by Cambridge University Press:  07 December 2009

Huijuan Wang
Affiliation:
School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
Shuxin Wang*
Affiliation:
School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
Jienan Ding
Affiliation:
Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
Haifeng Luo
Affiliation:
School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
*
*Corresponding author. E-mail: shuxinw@tju.edu.cn

Summary

Suturing and tying knots assisted by surgical robot systems are complicated and time-consuming tasks in minimally invasive surgery (MIS). It is almost impossible to perform these operations in laryngeal MIS because motions of the end-effectors are greatly confined by a narrow and long laryngoscope tube. This paper presents the robot-assisted operations of suturing and knot-tying in a laryngeal surgery under a self-retaining laryngoscope, which has a greatly confined workspace. In order to use robot assistance to perform the suturing and knot-tying tasks in such a workspace, an appropriate suturing path is planned. The suturing path planning is completed based on a knot-tying algorithm called the bending-twisting knot-tying (BTKT). A robot system for laryngeal MIS called MicroHand III is designed. The kinematical model of the system is developed in the paper. The simulation and experimental results have shown that suturing and knot-tying assisted by MicroHand III system are successful.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, S. X., Wang, H. J. and Yue, L. W., “A novel knot-tying approach for minimally invasive surgical robot systems,” Int. J. Med. Robotics Computer Assisted Surg. 4 (3), 268276 (2008).CrossRefGoogle ScholarPubMed
2. Varma, T. R., Eldridge, P. R. and Forster, A., “Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery,” Stereotactic Funct. Neurosurg. 80 (1–4), 132135 (2003).CrossRefGoogle Scholar
3. Taylor, R. H., Jenson, P., Whitcomb, L., Barnes, A., Kumar, R., Stoianovici, D., Gupta, P., Wang, Z. X., deJuan, E. and Kavoussi, L., “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robotics Res. 18, 12011210 (1999).CrossRefGoogle Scholar
4. Taylor, R. H., Mittelstadt, B. D., Paul, H. A., Hanson, W., Kazanzides, P. and Zuhars, J. F., “An image-directed robotic system for precise orthopaedic surgery,” IEEE Transactions on Robotics and Automation 10 (3), 261275 (1994).CrossRefGoogle Scholar
5. Taylor, R. H. and Stoianovici, D., “Medical robotics in computer-integrated surgery,” IEEE Transactions on Robotics and Automation 19 (5), 765781 (2003).CrossRefGoogle Scholar
6. Pei, B. Q., Zhou, L., Lv, K. and Wang, T. M., “The surgery parameters optimizing analysis of the internal fixation of femoral neck fracture,” Chinese J. Biomed. Eng. 26 (3), 431440 (2007).Google Scholar
7. Cleary, K., Melzer, A., Watson, V., Kronreif, G. and Stoianovici, D., “Interventional robotic systems: Applications and technology state-of-the-art,” Minimally Invasive Ther. Allied Technol. 15 (2), 101113 (2006).CrossRefGoogle ScholarPubMed
8. Quinn, A. M., “CyberKnife®: A robotic radiosurgery system,” Clinical Journal of Oncology Nursing 6 (3), 149 (2002).CrossRefGoogle ScholarPubMed
9. Hakimi, A., Feder, M. and Ghavamian, R., “Minimally invasive approaches to prostate cancer: A review of the current literature,” Urol. J. 4 (3), 130137 (2007).Google ScholarPubMed
10. Ruurda, J. P., van Vroonhoven, T. and Broeders, I., “Robot-assisted surgical systems: A new era in laparoscopic surgery,” Ann. R. Coll. Surg. Engl. 84, 223226 (2002).CrossRefGoogle ScholarPubMed
11. Meadows, M., “Computer-assisted surgery: An update,” FDA Consumer Mag. 39 (4), 1617 (2005).Google ScholarPubMed
12. Miller, D. W., Schlinkert, R. T. and Schlinkert, D. K., “Robot-assisted laparoscopic cholecystectomy: Initial Mayo Clinic Scottsdale experience,” Mayo Clin. Proc. 79 (9), 11321136 (2004).CrossRefGoogle ScholarPubMed
13. Heemskerk, J., van Dam, R., van Gemert, W. G., Beets, G. L., Greve, J. W. M., Jacobs, M. and Bouvy, N. D., “First results after introduction of the four-armed da Vinci surgical system in fully robotic laparoscopic cholecystectomy,” Dig. Surg. 22 (6), 426431 (2005).CrossRefGoogle Scholar
14. Miller, N. L. and Theodorescu, D., “Status of robotic cystectomy in 2005,” World J. Urol. 24 (2), 180187 (2006).CrossRefGoogle ScholarPubMed
15. Wolfram, M., Braeutigam, R., Engl, T., Bentas, W., Heitkamp, S., Ostwald, M., Kramer, W., Binder, J., Blaheta, R., Jonas, D. and Beecken, W. D., “Robotic-assisted laparoscopic radical prostatectomy: The Frankfurt technique,” World J. Urol. 21 (3), 128132 (2003).CrossRefGoogle ScholarPubMed
16. Dogan, S., Aybek, T., Risteski, P., Mierdl, S., Stein, H., Herzog, C., Khan, M. F., Dzemali, O., Moritz, A. and Wimmer-Greinecker, G., “Totally endoscopic coronary artery bypass graft: Initial experience with an additional instrument arm and an advanced camera system,” Surg. Endosc. 18 (11), 15871591 (2004).Google Scholar
17. Jones, B. A., Krueger, S., Howell, D., Meinecke, B. and Dunn, S., “Robotic mitral valve repair: A community hospital experience,” Tex. Heart Inst. J. 32 (2), 143146 (2005).Google ScholarPubMed
18. Murphy, D. A., Miller, J. S., Langford, D. A. and Snyder, A. B., “Endoscopic robotic mitral valve surgery,” J. Thorac. Cardiovasc. Surg. 132 (4), 776781 (2006).CrossRefGoogle ScholarPubMed
19. Mayer, H., Gomz, F., Wierstra, D., Nagy, I., Knoll, A. and Schmidhuber, J., “A system for robotic heart surgery that learns to tie knots using recurrent neural networks,” Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China (2006).Google Scholar
20. McLeod, I. K. and Melder, P. C., “Da Vinci robot-assisted excision of a vallecular cyst: A case report,” Ear, Nose Throat J. 84 (3), 170172 (2005).CrossRefGoogle Scholar
21. McLeod, I. K., Mair, E. A. and Melder, P. C., “Potential applications of the Da Vinci minimally invasive surgical robotic system in otolaryngology,” Ear, Nose Throat J. 84 (8), 483487 (2005).CrossRefGoogle Scholar
22. Hockstein, N. G., Nolan, J. P., O'Malley, B. W., et al. , “Robotic microlaryngeal surgery: A technical feasibility study using the DaVinci surgical robot and an airway mannequin,” Laryngoscope 115 (5), 780785 (2005).CrossRefGoogle Scholar
23. Wang, S. X., Li, Q. Z., Ding, J. N. and Zhang, Z. J., “Kinematic design for robot-assisted laryngeal surgery systems,” 2006 IROS IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China (2006) pp. 28642869.Google Scholar
24. Kapoor, A., Simaan, N. and TayJor, R. H., “Suturing in confined spaces: Constrained motion control of a hybrid 8-DoF robot,” 12th International Conference on Advanced Robotics, Seattle, US (2005) pp. 452459.Google Scholar
25. Pai, D. K., “STRANDS: Interactive simulation of thin solids using Cosserat models,” Comput. Graph. Forum 21 (3), 347352 (2002).CrossRefGoogle Scholar
26. Brown, J., Latombe, J. C. and Montgomery, K., “Real-time knot-tying simulation,” Visual Comput. 20, 165179 (2004).CrossRefGoogle Scholar
27. Phillips, J., Ladd, A. and Kavraki, L. E., “Simulated knot tying,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC, Vol. 1 (2002) pp. 841846.Google Scholar
28. Saha, M. and Isto, P., “Motion planning for robotic manipulation of deformable linear objects,” Preceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL (2006) pp. 24782482.Google Scholar
29. Nageotte, F., de Mathelin, M., Doignon, C., Soler, L., Leroy, J. and Marescaux, J., “Computer-aided suturing in laparoscopic surgery,” Int. Congr. Ser. 1268, 781786 (2004).CrossRefGoogle Scholar
30. Kang, H. and Wen, J. T., “Autonomous suturing using minimally invasive surgical robots,” Proceedings of the 2000 IEEE International Conference on Control Applications, Anchorage, Alaska (2000) pp. 742747.Google Scholar
31. Kuniholm, J. F. and Buckner, G. D., “Automated knot tying for fixation in minimally invasive,” Robot-Assisted Cardiac Surgery 127 (11), 10011008 (2005).Google ScholarPubMed
32. Murphy, D. L., “Endoscopic suturing and knot tying: Theory into practice,” Ann. Surg. 234 (5), 607612 (2001).CrossRefGoogle Scholar
33. Ustuner, Emin Tuncay, “Automatic surgical suturing instrument and method,” US Patent 7048748B1 (2006).Google Scholar
34. Ring, W. H., “A new Device for exposure of the oropharynx,” Arch Otolaryngol 96 (1), 8687 (1972).CrossRefGoogle ScholarPubMed
35. Ding, J. N., Design and Implementation of Laryngeal Minimally Invasive Surgery Robot System with Suturing Ability (Tianjin University PhD dissertation, 2008).Google Scholar
36. Cao, C. G. L. and MacKenzie, C. L., “Task and motion analyses in endoscopic surgery,” 1996 ASME IMECE Conference Proceedings: 5th Annual Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Atlanta, GA (1996) pp. 583590.Google Scholar
37. Kang, H. and Wen, J. T., “Robotic knot tying in minimally invasive surgeries,” Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems EPFL, Lausanne, Switzerland (2002).Google Scholar
38. Donelan, P. S., “Singularity-theoretic methods in robot kinematics,” Robotica 25 (6), 641659 (2007).CrossRefGoogle Scholar
39. Dai, J. S., “An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist,” Mech. Mach. Theory 41 (1), 4152 (2006).CrossRefGoogle Scholar
40. Murray, R. M., Li, Z. X. and Sastry, S. S., A Mathematical Introduction to Robotic Manipulation (CRC Press LLC, Boca Raton, FL, 1994).Google Scholar