Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T07:50:18.260Z Has data issue: false hasContentIssue false

Techniques for vibration control of a flexible robot manipulator

Published online by Cambridge University Press:  23 January 2006

Z. Mohamed
Affiliation:
Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor (Malaysia).
A. K. Chee
Affiliation:
Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor (Malaysia).
A. W. I. Mohd Hashim
Affiliation:
Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor (Malaysia).
M. O. Tokhi
Affiliation:
Department of Automatic Control and Systems Engineering, The University of Sheffield (UK).
S. H. M. Amin
Affiliation:
Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor (Malaysia).
R. Mamat
Affiliation:
Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor (Malaysia).

Abstract

This paper presents investigations into the applications and performance of positive and negative input shapers in command shaping techniques for the vibration control of a flexible robot manipulator. A constrained planar single-link flexible manipulator is considered and the dynamic model of the system is derived using the finite element method. An unshaped bang-bang torque input is used to determine the characteristic parameters of the system for design and evaluation of the input shaping control techniques. The positive and specified amplitude negative input shapers are designed based on the properties of the system. Simulation results of the response of the manipulator to the shaped inputs are presented in the time and frequency domains. Performances of the shapers are examined in terms of level of vibration reduction, time response specifications and robustness to parameters uncertainty. The effects of derivative order of the input shaper on the performance of the system are investigated. Finally, a comparative assessment of the impact amplitude polarities of the input shapers on the system performance is presented and discussed.

Type
Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)