Published online by Cambridge University Press: 09 March 2009
This paper presents a neural network based control strategy for the trajectory control of robot manipulators. The neural network learns the inverse dynamics of a robot manipulator without any a priori knowledge of the manipulator inertial parameters nor any a priori knowledge of the equation of dynamics. A two step feedback-error-learning process is proposed. Strategies for selection of the training trajectories and difficulties with on-line training are discussed.