Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T09:51:00.408Z Has data issue: false hasContentIssue false

A Tutorial Survey and Comparison of Impedance Control on Robotic Manipulation

Published online by Cambridge University Press:  29 January 2019

Peng Song
Affiliation:
College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China E-mail: songpsp123@163.com
Yueqing Yu
Affiliation:
College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China E-mail: yqyu@bjut.edu.cn
Xuping Zhang*
Affiliation:
Aarhus School of Engineering & Department of Engineering, Aarhus University, Aarhus, Denmark
*
*Corresponding author. E-mail: xuzh@ase.au.dk

Summary

There have been significant interests and efforts in the field of impedance control on robotic manipulation over last decades. Impedance control aims to achieve the desired mechanical interaction between the robotic equipment and its environment. This paper gives the overview and comparison of basic concepts and principles, implementation strategies, crucial techniques, and practical applications concerning the impedance control of robotic manipulation. This work attempts to serve as a tutorial to people outside the field and to promote discussion of a unified vision of impedance control within the field of robotic manipulation. The goal is to help readers quickly get into the problems of their interests related to impedance control of robotic manipulation and to provide guidance and insights in finding appropriate strategies and solutions.

Type
Articles
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hogan, N., “Adaptive control of mechanical impedance by coactivation of antagonist muscles,” IEEE Trans. Autom. Control 29(8), 681690 (1984).CrossRefGoogle Scholar
Hogan, N., “The mechanics of multi-joint posture and movement control,” Biol. Cybern. 52(5), 315331 (1985).CrossRefGoogle ScholarPubMed
Hogan, N., “Controlling Impedance at the Man/Machine Interface,” Proceedings of the International Conference on Robotics and Automation, Scottsdale, AZ, USA (1989) pp. 16261631.Google Scholar
Takahashi, C. D., Scheidt, R. A. and Reinkensmeyer, D. J., “Impedance control and internal model formation when reaching in a randomly varying dynamical environment,” J. Neurophysiol. 86(2), 10471051 (2001).CrossRefGoogle Scholar
Park, J. H., “Impedance control for biped robot locomotion,” IEEE Trans. Rob. Autom. 17(6), 870882 (2001).CrossRefGoogle Scholar
Franklin, D., Osu, R., Burdet, E., Kawato, M. and Milner, T. E., “Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model,” J. Neurophysiol. 90(5), 32703282 (2003).CrossRefGoogle ScholarPubMed
Lee, K. and Buss, M., “Force Tracking Impedance Control with Variable Target Stiffness,” IFAC Proceedings Volumes, Seoul, South Korea (2008) pp. 67516756.Google Scholar
Colgate, J. E., The Control of Dynamically Interacting Systems. Diss., Massachusetts Institute of Technology (1988).Google Scholar
Colgate, J. E. and Hogan, N., “Robust control of dynamically interacting systems,” Int. J. Control 48(1), 6588 (1988).CrossRefGoogle Scholar
Lawrence, D. A., “Impedance Control Stability Properties in Common Implementations,” Proceedings. 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA (1988) pp. 11851190.CrossRefGoogle Scholar
Hogan, N. and Buerger, S. P., “Impedance and Interaction Control,” In: Robotics and Automation Handbook, vol. 19 (CRC Press, Boca Raton, FL, USA, 2004) pp. 375398.Google Scholar
Kazerooni, H., Robust, A Design Method for Impedance Control of Constrained Dynamic Systems. Diss., Massachusetts Institute of Technology (1985).Google Scholar
Tsumugiwa, T., Yokogawa, R. and Yoshida, K., “Stability analysis for impedance control of robot in human-robot cooperative task system,” J. Adv. Mech. Design Syst. Manufact. 1(1), 113121 (2007).CrossRefGoogle Scholar
Surdilovic, D., “Contact Stability Issues in Position Based Impedance Control: Theory and Experiments,” Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA (1996) pp. 16751680.CrossRefGoogle Scholar
Schindlbeck, C. and Haddadin, S., “Unified Passivity-Based Cartesian Force/Impedance Control for Rigid and Flexible Joint Robots via Task-Energy Tanks,” 2015 IEEE International Conference on Robotics and Automation, Seattle, WA, USA (2015) pp. 440447.CrossRefGoogle Scholar
Lee, J., Hyun, D. J., Ahn, J., Kim, S. and Hogan, N., “On the Dynamics of a Quadruped Robot Model with Impedance Control: Self-stabilizing High Speed Trot-Running and Period-Doubling Bifurcations,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA (2014) pp. 49074913.CrossRefGoogle Scholar
Khansari, M., Kronander, K. and Billard, A., “Modeling Robot Discrete Movements with State-Varying Stiffness and Damping: A Framework for Integrated Motion Generation and Impedance Control,” Proceedings of Robotics: Science and Systems, Berkeley, CA, USA (2014) pp. 110.Google Scholar
Focchi, M., Medrano-Cerda, G. A., Boaventura, T., Frigerio, M., Semini, C., Buchli, J. and Caldwell, D. G., “Robot impedance control and passivity analysis with inner torque and velocity feedback loops,” Control Theor. Technol. 14(2), 97112 (2016).CrossRefGoogle Scholar
Laurin-Kovitz, K. F., Colgate, J. E. and Carnes, S. D. R., “Design of Components for Programmable Passive Impedance,” Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA (1991) pp. 14761481.CrossRefGoogle Scholar
Morita, T. and Sugano, S., “Design and Development of a New Robot Joint Using a Mechanical Impedance Adjuster,” Proceedings of 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan (1995) pp. 24692475.CrossRefGoogle Scholar
Sensinger, J. W. and Weir, R. F. F., “Unconstrained Impedance Control Using a Compact Series Elastic Actuator,” 2006 2nd IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, Beijing, China (2006) pp. 16.Google Scholar
Vanderborght, B. et al., “Variable Impedance Actuators: Moving the Robots of Tomorrow,” 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal (2012) pp. 54545455.CrossRefGoogle Scholar
Vanderborght, B. et al., “Variable impedance actuators: A review,” Rob. Auton. Syst. 61(12), 16011614 (2013).CrossRefGoogle Scholar
Pratt, G. A., Willisson, P., Bolton, C. and Hofman, A., “Late Motor Processing in Low-Impedance Robots: Impedance Control of Series-Elastic Actuators,” Proceedings of the 2004 American Control Conference, Boston, MA, USA (2004) pp. 32453251.CrossRefGoogle Scholar
Paine, N. et al., “Actuator control for the NASA-JSC valkyrie humanoid robot: A decoupled dynamics approach for torque control of series elastic robots,” J. Field Rob. 32(3), 378396 (2015).CrossRefGoogle Scholar
Calanca, A., Muradore, R. and Fiorini, P., “Impedance Control of Series Elastic Actuators Using Acceleration Feedback,” In: Wearable Robotics: Challenges and Trends (González-Vargas, J. et al., eds.) (Springer, Cham, Switzerland, 2017) pp. 3337.CrossRefGoogle Scholar
Zhao, Y., Paine, N., Jorgensen, S. J. and Sentis, L., “Impedance control and performance measure of series elastic actuators,” IEEE Trans. Ind. Electron. 65(3), 28172827 (2018).CrossRefGoogle Scholar
Mehling, J. S. and O’Malley, M. K., “A Model Matching Framework for the Synthesis of Series Elastic Actuator Impedance Control,” 22nd Mediterranean Conference on Control and Automation, Palermo, Italy (2014) pp. 249254.Google Scholar
Zhao, Y., Paine, N. and Sentis, L., “Feedback Parameter Selection for Impedance Control of Series Elastic Actuators,” 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain (2014) pp. 9991006.CrossRefGoogle Scholar
Noritsugu, T. and Tanaka, T., “Application of rubber artificial muscle manipulator as a rehabilitation robot,” IEEE/ASME Trans. Mechatr. 2(4), 259267 (1997).CrossRefGoogle Scholar
Paoletti, P., Jones, G. W. and Mahadevan, L., “Grasping with a soft glove: Intrinsic impedance control in pneumatic actuators,” J. Roy. Soc. Interface 14(128), 20160867 (2017).CrossRefGoogle ScholarPubMed
Butterfass, J., Grebenstein, M., Liu, H. and Hirzinger, G., “DLR-Hand II: Next Generation of a Dextrous Robot Hand,” Proceedings of 2001 IEEE International Conference on Robotics and Automation, Seoul, South Korea (2001) pp. 109114.Google Scholar
Laschi, C. and Cianchetti, M., “Soft robotics: New perspectives for robot bodyware and control,” Front. Bioeng. Biotechnol. 2, 3 (2014).CrossRefGoogle ScholarPubMed
Lin, W., Yuan, L., Dong, W., Guan, R., Gu, X. and Qian, C., “Impedance Control Based Analysis of Compliant Flange,” 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), Hefei, China (2017) pp. 12221227.CrossRefGoogle Scholar
Lu, W. and Meng, Q., “Impedance control with adaptation for robotic manipulations,” IEEE Trans. Rob. Autom. 7(3), 408415 (1991).CrossRefGoogle Scholar
Pelletier, M. and Doyon, M., “On the Implementation and Performance of Impedance Control on Position Controlled Robots,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA (1994) pp. 12281233.CrossRefGoogle Scholar
Morel, G., Malis, E. and Boudet, S., “Impedance Based Combination of Visual and Force Control,” Proceedings. 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium (1998) pp. 17431748.Google Scholar
Jung, S. and Hsia, T. C., “Neural network impedance force control of robot manipulator,” IEEE Trans. Ind. Electron. 45(3), 451461 (1998).CrossRefGoogle Scholar
Fateh, M. M. and Babaghasabha, R., “Impedance control of robots using voltage control strategy,” Nonlinear Dyn. 74(1), 277286 (2013).CrossRefGoogle Scholar
Chan, S. P., Yao, B., Gao, W. B. and Cheng, M., “Robust impedance control of robot manipulators,” Int. J. Rob. Autom. 6(4), 220227 (1991).Google Scholar
Lee, S. and Lee, H. S., “Intelligent Control of Manipulators Interacting with an Uncertain Environment Based on Generalized Impedance,” Proceedings of the 1991 IEEE International Symposium on Intelligent Control, Arlington, VA, USA (1991) pp. 6166.CrossRefGoogle Scholar
Lasky, T. A. and Hsia, T. C., “On Force-Tracking Impedance Control of Robot Manipulators,” Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA (1991) pp. 274280.CrossRefGoogle Scholar
Seraji, H. and Colbaugh, R., “Force tracking in impedance control,” Int. J. Rob. Res. 16(1), 97117 (1997).CrossRefGoogle Scholar
Jung, S., Hsia, T. C. and Bonitz, R. G., “Force tracking impedance control of robot manipulators under unknown environment,” IEEE Trans. Control Syst. Technol. 12(3), 474483 (2004).CrossRefGoogle Scholar
Roveda, L., Vicentini, F. and Tosatti, L. M., “Deformation-Tracking Impedance Control in Interaction with Uncertain Environments,” 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan (2013) pp. 19921997.CrossRefGoogle Scholar
Roveda, L., Iannacci, N., Vicentini, F., Pedrocchi, N., Braghin, F. and Tosatti, L. M., “Optimal impedance force-tracking control design with impact formulation for interaction tasks,” IEEE Rob. Autom. Lett. 1(1), 130136 (2016).CrossRefGoogle Scholar
Jung, S., Hsia, T. C. and Bonitz, R. G., “Force tracking impedance control for robot manipulators with an unknown environment: Theory, simulation, and experiment,” Int. J. Rob. Res. 20(9), 765774 (2001).CrossRefGoogle Scholar
Anderson, R. J. and Spong, M. W., “Hybrid impedance control of robotic manipulators,” IEEE J. Rob. Autom. 4(5), 549556 (1988).CrossRefGoogle Scholar
Liu, G. J. and Goldenberg, A. A., “Robust Hybrid Impedance Control of Robot Manipulators,” Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA (1991) pp. 287292.CrossRefGoogle Scholar
Zeng, G. and Hemami, A., “An overview of robot force control,” Robotica 15(5), 473482 (1997).CrossRefGoogle Scholar
Adhikary, N. and Mahanta, C., “Hybrid Impedance Control of Robotic Manipulator Using Adaptive Backstepping Sliding Mode Controller with PID Sliding Surface,” 2017 Indian Control Conference (ICC), Guwahati, India (2017) pp. 391396.CrossRefGoogle Scholar
Sado, F., Sidek, S. N. and Yusof, H. M., “Adaptive Hybrid Impedance Control for a 3DOF Upper Limb Rehabilitation Robot Using Hybrid Automata,” 2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia (2014) pp. 596601.CrossRefGoogle Scholar
Kazerooni, H., “Robust, Non-linear Impedance Control for Robot Manipulators,” Proceedings. 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA (1987) pp. 741750.CrossRefGoogle Scholar
Lu, Z. and Goldenberg, A. A., “Robust impedance control and force regulation: Theory and experiments,” Int. J. Rob. Res. 14(3), 225254 (1995).Google Scholar
Souzanchi-K, M., Arab, A., Akbarzadeh-T, M. and Fateh, M. M., “Robust impedance control of uncertain mobile manipulators using time-delay compensation,” IEEE Trans. Control Syst. Technol. 26(6), 19421953 (2018).CrossRefGoogle Scholar
Azimi, V., Simon, D. and Richter, H., “Stable Robust Adaptive Impedance Control of a Prosthetic Leg,” Proceedings of the ASME Dynamic Systems and Control Conference, Columbus, OH, USA (2015) pp. V001T09A003.Google Scholar
Kelly, R., Carelli, R., Amestegui, M. and Ortega, R., “On Adaptive Impedance Control of Robot Manipulators,” Proceedings, 1989 International Conference on Robotics and Automation, Scottsdale, AZ, USA (1989) pp. 572577.CrossRefGoogle Scholar
Carelli, R. and Kelly, R., “An adaptive impedance/force controller for robot manipulators,” IEEE Trans. Autom. Control 36(8), 967971 (1991).CrossRefGoogle Scholar
Colbaugh, R., Seraji, H. and Glass, K., “Direct adaptive impedance control of robot manipulators,” J. Field Rob. 10(2), 217248 (1993).Google Scholar
Ikeura, R., Monden, H. and Inooka, H., “Cooperative Motion Control of a Robot and a Human,” Proceedings of 1994 3rd IEEE International Workshop on Robot and Human Communication, Nagoya, Japan (1994) pp. 112117.CrossRefGoogle Scholar
Ikeura, R. and Inooka, H., “Variable Impedance Control of a Robot for Cooperation with a Human,” Proceedings of 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan (1995) pp. 30973102.CrossRefGoogle Scholar
Tsumugiwa, T., Yokogawa, R. and Hara, K., “Variable Impedance Control Based on Estimation of Human Arm Stiffness for Human-Robot Cooperative Calligraphic Task,” Proceedings 2002 IEEE International Conference on Robotics and Automation, Washington, DC, USA (2002) pp. 644650.Google Scholar
Chien, M. C. and Huang, A. C., “Adaptive Impedance Control of Robot Manipulators Based on Function Approximation Technique,” Robotica 22(4), 395403 (2004).CrossRefGoogle Scholar
Duchaine, V. and Gosselin, C. M., “General Model of Human-Robot Cooperation Using a Novel Velocity Based Variable Impedance Control,” Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Tsukaba, Japan (2007) pp. 446451.CrossRefGoogle Scholar
Sharifi, M., Behzadipour, S. and Vossoughi, G., “Nonlinear model reference adaptive impedance control for human-robot interactions,” Control Eng. Pract. 32, 927 (2014).CrossRefGoogle Scholar
Xu, Q., “Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper,” IEEE Trans. Rob. 29(3), 663673 (2013).CrossRefGoogle Scholar
Kamnik, R., Matko, D. and Bajd, T., “Application of model reference adaptive control to industrial robot impedance control,” J. Intell. Rob. Syst. 22(2), 153163 (1998).CrossRefGoogle Scholar
Lv, X., Han, J., Yang, C. and Cong, D., “Model Reference Adaptive Impedance Control in Lower Limbs Rehabilitation Robot,” 2017 IEEE International Conference on Information and Automation (ICIA), Macau, China (2017) pp. 254259.CrossRefGoogle Scholar
Huang, B., Li, Z., Wu, X., Ajoudani, A., Bicchi, A. and Liu, J., “Coordination control of a dual-arm exoskeleton robot using human impedance transfer skills,” IEEE Trans. Syst. Man Cybern. Syst. (99), 110 (2017).Google Scholar
Li, P., Ge, S. S. and Wang, C., “Impedance Control for Human-Robot Interaction with an Adaptive Fuzzy Approach,” 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China (2017) pp. 58895894.CrossRefGoogle Scholar
Li, Z., Yang, D., Zhou, H. and Cao, H., “Research of a Self-adaptive Robot Impedance Control Method for Robot-Environment Interaction,” In: Robot Intelligence Technology and Applications 3: Results from the 3rd International Conference on Robot Intelligence Technology and Applications, (Kim, J.-H. et al., eds.) vol. 345 (Springer, Cham, Switzerland, 2015) pp. 221238.Google Scholar
Ataei, M. M., Salarieh, H. and Alasty, A., “An adaptive impedance control algorithm; application in exoskeleton robot,” Sci. Iran. Trans. B Mech. Eng. 22(2), 519 (2015).Google Scholar
Sharifi, M., Behzadipour, S. and Vossoughi, G. R., “Model reference adaptive impedance control in Cartesian coordinates for physical human-robot interaction,” Adv. Rob. 28(19), 12771290 (2014).CrossRefGoogle Scholar
Kai, C. Y. and Huang, A. C., “A regressor-free adaptive impedance controller for robot manipulators without Slotine and Li’s modification: Theory and experiments,” Robotica 33(3), 638648 (2015).CrossRefGoogle Scholar
Chiu, S. H., Chen, C. C., Chen, K. T., Huang, X. J. and Pong, S. H., “Joint position-based impedance control with load compensation for robot arm,” J. Chin. Inst. Eng. 39(3), 337344 (2016).CrossRefGoogle Scholar
Kim, S., Kim, J. and Ryu, J., “Adaptive energy-bounding approach for robustly stable interaction control of impedance-controlled industrial robot with uncertain environments,” IEEE/ASME Trans. Mech. 19(4), 11951205 (2014).CrossRefGoogle Scholar
Alqaudi, B., Modares, H., Ranatunga, I., Tousif, S. M., Lewis, F. L. and Popa, D. O., “Model reference adaptive impedance control for physical human-robot interaction,” Control Theor. Technol. 14(1), 6882 (2016).CrossRefGoogle Scholar
Ikeura, R., Moriguchi, T. and Mizutani, K., “Optimal Variable Impedance Control for a Robot and Its Application to Lifting an Object with a Human,” Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication, Berlin, Germany (2002) pp. 500505.CrossRefGoogle Scholar
Gomi, H. and Kawato, M., “Neural network control for a closed-loop system using feedback-error-learning,” Neural Netw. 6(7), 933946 (1993).CrossRefGoogle Scholar
Cheah, C. C. and Wang, D., “Learning impedance control for robotic manipulators,” IEEE Trans. Rob. Autom. 14(3), 452465 (1998).CrossRefGoogle Scholar
Buchli, J., Stulp, F., Theodorou, E. and Schaal, S., “Learning variable impedance control,” Int. J. Rob. Res. 30(7), 820833 (2011).CrossRefGoogle Scholar
Li, Y., Ge, S. S. and Yang, C., “Learning impedance control for physical robot-environment interaction,” Int. J. Control 85(2), 182193 (2012).CrossRefGoogle Scholar
He, W., Dong, Y. and Sun, C., “Adaptive neural impedance control of a robotic manipulator with input saturation,” IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334344 (2016).CrossRefGoogle Scholar
Jung, S., Yim, S. B. and Hsia, T. C., “Experimental Studies of Neural Network Impedance Force Control for Robot Manipulators,” Proceedings of 2001 IEEE International Conference on Robotics and Automation, Seoul, South Korea (2001) pp. 34533458.Google Scholar
He, W., Chen, Y. and Yin, Z., “Adaptive neural network control of an uncertain robot with full-state constraints,” IEEE Trans. Cybern. 46(3), 620629 (2016).CrossRefGoogle ScholarPubMed
He, W., Ge, S. S., Li, Y., Chew, E. and Ng, Y. S., “Neural network control of a rehabilitation robot by state and output feedback,” J. Intell. Rob. Syst. 80(1), 1531 (2015).CrossRefGoogle Scholar
He, W. and Dong, Y., “Adaptive fuzzy neural network control for a constrained robot using impedance learning,” IEEE Trans. Neural Netw. Learn. Syst. 29(4), 11741186 (2017).CrossRefGoogle ScholarPubMed
Li, M., Yin, H., Tahara, K. and Billard, A., “Learning Object-Level Impedance Control for Robust Grasping and Dexterous Manipulation,” 2014 IEEE International Conference on Robotics and Automation, Hong Kong, China (2014) pp. 67846791.CrossRefGoogle Scholar
Li, Z., Liu, J., Huang, Z., Peng, Y., Pu, H. and Ding, L., “Adaptive impedance control of human-robot cooperation using reinforcement learning,” IEEE Trans. Ind. Electron. 64(10), 80138022 (2017).CrossRefGoogle Scholar
Blaya, J. A. and Herr, H., “Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait,” IEEE Trans. Neural Syst. Rehabil. Eng. 12(1), 2431 (2004).CrossRefGoogle ScholarPubMed
Hussain, S., Xie, S. Q. and Jamwal, P. K., “Adaptive impedance control of a robotic orthosis for gait rehabilitation,” IEEE Trans. Cybern. 43(3), 10251034 (2013).CrossRefGoogle ScholarPubMed
Hogan, N., Krebs, H. I., Charnnarong, J., Srikrishna, P. and Sharon, A., “MIT-MANUS: A Workstation for Manual Therapy and Training. I,” Proceedings of 1992 IEEE International Workshop on Robot and Human Communication, Tokyo, Japan (1992) pp. 161165.CrossRefGoogle Scholar
Tsuji, T. and Tanaka, Y., “Tracking control properties of human-robotic systems based on impedance control,” IEEE Trans. Syst. Man Cybern. A: Syst. Humans 35(4), 523535 (2005).CrossRefGoogle Scholar
Yang, Y., Wang, L., Tong, J. and Zhang, L., “Arm Rehabilitation Robot Impedance Control and Experimentation,” 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, China (2006) pp. 914918.CrossRefGoogle Scholar
Aguirre-Ollinger, G., Colgate, J. E., Peshkin, M. A. and Goswami, A., “Active-Impedance Control of a Lower-Limb Assistive Exoskeleton,” 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, Netherlands (2007) pp. 188195.CrossRefGoogle Scholar
Kiguchi, K. and Hayashi, Y., “An EMG-based control for an upper-limb power-assist exoskeleton robot,” IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(4), 10641071 (2012).CrossRefGoogle ScholarPubMed
Pan, L., Song, A., Xu, G., Li, H., Zeng, H. and Xu, B., “Safety supervisory strategy for an upper-limb rehabilitation robot based on impedance control,” Int. J. Adv. Rob. Syst. 10(2), (2013).Google Scholar
Li, Z., Huang, Z., He, W. and Su, C., “Adaptive impedance control for an upper limb robotic exoskeleton using biological signals,” IEEE Trans. Ind. Electron. 64(2), 16641674 (2017).CrossRefGoogle Scholar
Veneman, J. F., Kruidhof, R., Hekman, E. E. G., Ekkelenkamp, R., Van Asseldonk, E. H. F. and van der Kooij, H., “Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379386 (2007).CrossRefGoogle ScholarPubMed
Tsoi, Y. H. and Xie, S. Q., “Impedance Control of Ankle Rehabilitation Robot,” 2008 IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand (2009) pp. 840845.CrossRefGoogle Scholar
Hayashi, T., Kawamoto, H. and Sankai, Y., “Control Method of Robot Suit HAL Working as Operator’s Muscle Using Biological and Dynamical Information,” 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alta., Canada (2005) pp. 30633068.CrossRefGoogle Scholar
Khoshdel, V., Akbarzadeh, A., Naghavi, N., Sharifnezhad, A. and Souzanchi-Kashani, M., “sEMG-based impedance control for lower-limb rehabilitation robot,” Intell. Service Rob. 11(1), 97108 (2017).CrossRefGoogle Scholar
Sharifi, M., Behzadipour, S., Salarieh, H. and Tavakoli, M., “Cooperative modalities in robotic tele-rehabilitation using nonlinear bilateral impedance control,” Control Eng. Pract. 67, 5263 (2017).CrossRefGoogle Scholar
Farjadian, A. B., Nabian, M., Mavroidis, C. and Holden, M. K., “Implementation of a Task-Dependent Anisotropic Impedance Controller into a 2-DOF Platform-Based Ankle Rehabilitation Robot,” 2015 IEEE International Conference on Robotics and Automation, Seattle, WA, USA (2015) pp. 55905595.CrossRefGoogle Scholar
Huo, W., Mohammed, S., Amirat, Y. and Kong, K., “Active Impedance Control of a Lower Limb Exoskeleton to Assist Sit-to-Stand Movement,” 2016 IEEE International Conference on Robotics and Automation, Stockholm, Sweden (2016) pp. 35303536.Google Scholar
He, H. et al., “Rotation-Traction Manipulation Bionic Training Robot Based on Visual Servo and Impedance Control,” 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan (2017) pp. 17811786.CrossRefGoogle Scholar
Ibarra, J. C. P., dos Santos, W. M., Krebs, H. I. and Siqueira, A. A. G., “Adaptive Impedance Control for Robot-Aided Rehabilitation of Ankle Movements,” 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil (2014) pp. 664669.CrossRefGoogle Scholar
Choi, J. H. et al., “Force sensorless multi-functional impedance control for rehabilitation robot,” IFAC-PapersOnLine 50(1), 1207712082 (2017).CrossRefGoogle Scholar
Khoshdel, V., Tootoonchi, A. and Moeenfard, H., “Variable impedance control for rehabilitation robot using interval type-2 fuzzy logic,” Int. J. Rob. 4(3), 4654 (2015).Google Scholar
Jamwal, P. K., Hussain, S., Ghayesh, M. H. and Rogozina, S. V., “Impedance control of an intrinsically compliant parallel ankle rehabilitation robot,” IEEE Trans. Ind. Electron. 63(6), 36383647 (2016).CrossRefGoogle Scholar
Jamwal, P. K. et al., “Adaptive impedance control of parallel ankle rehabilitation robot,” J. Dyn. Syst. Measur. Control 139(11), 111006 (2017).CrossRefGoogle Scholar
Kosuge, K. and Kazamura, N., “Control of a Robot Handling an Object in Cooperation with a Human,” Proceedings 6th IEEE International Workshop on Robot and Human Communication, Sendai, Japan (1997) pp. 142147.Google Scholar
Rozo, L. et al., “Learning Collaborative Impedance-Based Robot Behaviors,” Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, Bellevue, WA, USA (2013) pp. 14221428.Google Scholar
Wang, K., Sun, M. and Mao, Z., “Human-Robot Mutual Force Borrowing and Seamless Leader-Follower Role Switching by Learning and Coordination of Interactive Impedance,” In: Wearable Robotics: Challenges and Trends (González-Vargas, J. et al., eds.) (Springer, Cham, Switzerland, 2017) pp. 427432.CrossRefGoogle Scholar
Ficuciello, F., Villani, L. and Siciliano, B., “Impedance control of redundant manipulators for safe human-robot collaboration,” Acta Polytech. Hungarica 13(1), 223238 (2016).Google Scholar
Tsumugiwa, T., Takeuchi, Y. and Yokogawa, R., “Maneuverability of impedance-controlled motion in a human-robot cooperative task system,” J. Rob. Mechatr. 29(4), 746756 (2017).CrossRefGoogle Scholar
Peternel, L., Petriè, T. and Babiè, J., “Human-in-the-Loop Approach for Teaching Robot Assembly Tasks Using Impedance Control Interface,” 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA (2015) pp. 14971502.CrossRefGoogle Scholar
Ficuciello, F., Romano, A., Villani, L. and Siciliano, B., “Cartesian Impedance Control of Redundant Manipulators for Human-Robot Co-manipulation,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA (2014) pp. 21202125.CrossRefGoogle Scholar
Asada, H. and Asari, Y., “The Direct Teaching of Tool Manipulation Skills via the Impedance Identification of Human Motions,” Proceedings. 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA (1988) pp. 12691274.CrossRefGoogle Scholar
Huang, H. et al., “A cyber expert system for auto-tuning powered prosthesis impedance control parameters,” Ann. Biomed. Eng. 44(5), 16131624 (2016).Google Scholar
Luo, R. C., Shih, B. and Lin, T., “Real Time Human Motion Imitation of Anthropomorphic Dual Arm Robot Based on Cartesian Impedance Control,” 2013 IEEE International Symposium on Robotic and Sensors Environments (ROSE), Washington, DC, USA (2013) pp. 2530.CrossRefGoogle Scholar
Kazerooni, H., “Automated robotic deburring using impedance control,” IEEE Control Syst. Mag. 8(1), 2125 (1988).CrossRefGoogle Scholar
Heinrichs, B., Sepehri, N. and Thornton-Trump, A. B., “Position-based impedance control of an industrial hydraulic manipulator,” IEEE Control Syst. 17(1), 4652 (1997).Google Scholar
Ferretti, G., Magnani, G. and Rocco, P., “Impedance control for elastic joints industrial manipulators,” IEEE Trans. Rob. Autom. 20(3), 488498 (2004).CrossRefGoogle Scholar
Caccavale, F., Siciliano, B. and Villani, L., “The Tricept robot: Dynamics and impedance control,” IEEE/ASME Trans. Mechatr. 8(2), 263268 (2003).CrossRefGoogle Scholar
Seki, H., “Modeling and Impedance Control of a Piezoelectric Bimorph Microgripper,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, USA (1992) pp. 958965.CrossRefGoogle Scholar
Huang, H. et al., “Visual-based impedance control of out-of-plane cell injection systems,” IEEE Trans. Autom. Sci. Eng. 6(3), 565571 (2009).CrossRefGoogle Scholar
Xu, Q., “Robust impedance control of a compliant microgripper for high-speed position/force regulation,” IEEE Trans. Ind. Electron. 62(2), 12011209 (2015).CrossRefGoogle Scholar
Hogan, N., “Stable Execution of Contact Tasks Using Impedance Control,” Proceedings. 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA (1987) pp. 10471054.CrossRefGoogle Scholar
Hogan, N., “Impedance control - An approach to manipulation. I - Theory. II - Implementation. III–Applications,” ASME Trans. J. Dyn. Syst. Meas. Control 107, 124 (1985).CrossRefGoogle Scholar
Sano, Y., Hori, R. and Yabuta, T., “Comparison between admittance and impedance control method of a finger-arm robot during grasping object with internal and external impedance control,” Nihon Kikai Gakkai Ronbunshu, C Hen/Trans. Jpn. Soc. Mech. Eng. C 79(807), 43304334 (2013).CrossRefGoogle Scholar
Yoshikawa, T., “Force Control of Robot Manipulators,” Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, San Francisco, CA, USA (2000) pp. 220226.Google Scholar
Whitney, D. E., “Historical perspective and state of the art in robot force control,” Int. J. Rob. Res. 6(1), 314 (1987).CrossRefGoogle Scholar
Bonitz, R. C. and Hsia, T. C., “Internal force-based impedance control for cooperating manipulators,” IEEE Trans. Rob. Autom. 12(1), 7889 (1996).CrossRefGoogle Scholar
Khatib, O., “A unified approach for motion and force control of robot manipulators: The operational space formulation,” IEEE J. Rob. Autom. 3(1), 4353 (1987).CrossRefGoogle Scholar
Boaventura, T. et al., “Model-based hydraulic impedance control for dynamic robots,” IEEE Trans. Rob. 31(6), 13241336 (2015).CrossRefGoogle Scholar
Vorndamme, J., Schappler, M., Tödtheide, A. and Haddadin, S., “Soft Robotics for the Hydraulic Atlas Arms: Joint Impedance Control with Collision Detection and Disturbance Compensation,” 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea (2016) pp. 33603367.CrossRefGoogle Scholar
Kurfess, T. R., Robotics and Automation Handbook (CRC Press, Boca Raton, FL, USA, 2004).CrossRefGoogle Scholar
Newman, W. S. and Dohring, M. E., “Augmented Impedance Control: An Approach to Compliant Control of Kinematically Redundant Manipulators,” Proceedings. 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA (1991) pp. 3035.CrossRefGoogle Scholar
Mussa-Ivaldi, F. A. and Hogan, N., “Integrable solutions of kinematic redundancy via impedance control,” Int. J. Rob. Res. 10(5), 481491 (1991).CrossRefGoogle Scholar
Ficuciello, F., Villani, L. and Siciliano, B., “Variable impedance control of redundant manipulators for intuitive human-robot physical interaction,” IEEE Trans. Rob. 31(4), 850863 (2015).CrossRefGoogle Scholar
Albu-Schaffer, A., Ott, C., Frese, U. and Hirzinger, G., “Cartesian Impedance Control of Redundant Robots: Recent Results with the DLR-Light-Weight-Arms,” 2003 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA (2003) pp. 37043709.Google Scholar
Winiarski, T., Banachowicz, K. and Seredyński, D., “Two mode impedance control of Velma service robot redundant arm,” Progr. Autom. Rob. Meas. Tech. 351, 319328 (2015).Google Scholar
Ficuciello, F., Villani, L. and Siciliano, B., “Redundancy resolution in human-robot co-manipulation with cartesian impedance control,” Exp. Rob. 109, 165176 (2016).CrossRefGoogle Scholar
Spong, M. W., “On the force control problem for flexible joint manipulators,” IEEE Trans. Autom. Control 34(1), 107111 (1989).CrossRefGoogle Scholar
Albu-Schäffer, A., Ott, C. and Hirzinger, G., “A unified passivity-based control framework for position, torque and impedance control of flexible joint robots,” Int. J. Rob. Res. 26(1), 2339 (2007).CrossRefGoogle Scholar
Ott, C. et al., “On the passivity-based impedance control of flexible joint robots,” IEEE Trans. Rob. 24(2), 416429 (2008).CrossRefGoogle Scholar
Schneider, S. A. and Cannon, R. H., “Object impedance control for cooperative manipulation: Theory and experimental results,” IEEE Trans. Rob. Autom. 8(3), 383394 (1992).CrossRefGoogle Scholar
Lee, J., Chang, P. H. and Jamisola, R. S., “Relative impedance control for dual-arm robots performing asymmetric bimanual tasks,” IEEE Trans. Ind. Electron. 61(7), 37863796 (2014).CrossRefGoogle Scholar
Goldenberg, A. A., “Implementation of Force and Impedance Control in Robot Manipulators,” Proceedings. 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA (1988) pp. 16261632.CrossRefGoogle Scholar
Murakami, T., Nakamura, R., Yu, F. and Ohnishi, K., “Force Sensorless Impedance Control by Disturbance Observer,” Conference Record of the Power Conversion Conference - Yokohama 1993, Yokohama, Japan (1993) pp. 352357.CrossRefGoogle Scholar
Goodrich, M. A. and Schultz, A. C., “Human-robot interaction: A survey,” Found. Trends Hum.-Comput. Interact. 1(3), 203275 (2007).CrossRefGoogle Scholar
Albu-Schäffer, A. et al., “The DLR lightweight robot: Design and control concepts for robots in human environments,” Ind. Rob. Int. J. 34(5), 376385 (2007).CrossRefGoogle Scholar
Magrini, E., Flacco, F. and De, A. Luca, “Control of Generalized Contact Motion and Force in Physical Human-Robot Interaction,” 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA (2015) pp. 22982304.CrossRefGoogle Scholar
Lo, S. Y., Cheng, C. A. and Huang, H. P., “Virtual impedance control for safe human-robot interaction,” J. Intell. Rob. Syst. 82(1), (2016).CrossRefGoogle Scholar
Paredes-Madrid, L. and Gonzalez De Santos, P., “Dataglove-based interface for impedance control of manipulators in cooperative human–robot environments,” Meas. Sci. Technol. 24(2), 025005 (2013).CrossRefGoogle Scholar
Oh, S., Woo, H. and Kong, K., “Frequency-shaped impedance control for safe human-robot interaction in reference tracking application,” IEEE/ASME Trans. Mechatr. 19(6), 19071916 (2014).CrossRefGoogle Scholar
Hannaford, B., “A design framework for teleoperators with kinesthetic feedback,” IEEE Trans. Rob. Autom. 5(4), 426434 (1989).CrossRefGoogle Scholar
Li, Z. et al., “Human–robot coordination control of robotic exoskeletons by skill transfers,” IEEE Trans. Ind. Electron. 64(6), 51715181 (2017).CrossRefGoogle Scholar
Love, L. J. and Book, W. J., “Force reflecting teleoperation with adaptive impedance control,” IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(1), 159165 (2004).CrossRefGoogle ScholarPubMed
Jayender, J., Patel, R. V. and Nikumb, S., “Robot-Assisted Catheter Insertion Using Hybrid Impedance Control,” Proceedings 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA (2006) pp. 607612.Google Scholar
Xiao, L., Yang, T., Huo, B., Zhao, X., Han, J. and Xu, W., “Impedance Control of a Robot Needle with a Fiber Optic Force Sensor,” 2016 IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China (2016) pp. 13791383.CrossRefGoogle Scholar
Wang, X. et al., “Design of test platform for robot flexible grasping and grasping force tracking impedance control,” Trans. Chin. Soc. Agric. Eng. 31(1), 5863 (2015).Google Scholar
Forte, F., Naldi, R., Macchelli, A. and Marconi, L., “Impedance Control of an Aerial Manipulator,” 2012 American Control Conference (ACC), Montreal, QC, Canada (2012) pp. 38393844.CrossRefGoogle Scholar
Suarez, A., Heredia, G. and Ollero, A., “Physical-virtual impedance control in ultralightweight and compliant dual-arm aerial manipulators,” IEEE Rob. Autom. Lett. 3(3), 25532560 (2018).CrossRefGoogle Scholar
Lippiello, V., Fontanelli, G. A. and Ruggiero, F., “Image-based visual-impedance control of a dual-arm aerial manipulator,” IEEE Rob. Autom. Lett. 3(3), 18561863 (2018).CrossRefGoogle Scholar
Kumar, S., Rastogi, V. and Gupta, P., “PID Based Impedance Control Scheme for Flexible Single Arm Underwater Robot Manipulator,” International Conference on New Frontiers in Engineering, Science & Technology, New Delhi, India (2018) pp. 481488.Google Scholar
Dietrich, A. et al., “Whole-body impedance control of wheeled mobile manipulators,” Auton. Rob. 40(3), 505517 (2016).CrossRefGoogle Scholar
Que, L., Park, J. S. and Gianchandani, Y. B., “Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices,” J. Microelectromech. Syst. 10(2), 247254 (2001).Google Scholar
Zhang, Z. et al., “Dynamic modelling and analysis of V- and Z-shaped electrothermal microactuators,” Microsyst. Technol. 23(8), 37753789 (2017).CrossRefGoogle Scholar
Zhang, Z., et al., “Closed-form modelling and design analysis of V- and Z-shaped electrothermal microactuators,” J. Micromech. Microeng. 27(1), 015023 (2017).CrossRefGoogle Scholar
Wagner, B., Kreutzer, M. and Benecke, W., “Electromagnetic Microactuators with Multiple Degrees of Freedom,” TRANSDUCERS ‘91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, San Francisco, CA, USA (1991) pp. 614617.CrossRefGoogle Scholar
Lim, H.-O., Setiawan, S. A. and Takanishi, A., “Balance and Impedance Control for Biped Humanoid Robot Locomotion,” Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium, Maui, HI, USA (2001) pp. 494499.Google Scholar
Ma, W., Zhao, H., Kolathaya, S. and Ames, A. D., “Human-Inspired Walking via Unified PD and Impedance Control,” 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China (2014) pp. 50885094.CrossRefGoogle Scholar
Semini, C. et al., “Towards versatile legged robots through active impedance control,” Int. J. Rob. Res. 34(7), 10031020 (2015).CrossRefGoogle Scholar
Chen, Y., Zhao, J., Wang, J. and Li, D., “Fractional-Order Impedance Control for a Wheel-Legged Robot,” 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China (2017) pp. 78457850.CrossRefGoogle Scholar
Fu, Y., Luo, J., Ren, D., Zhou, H., Li, X. and Zhang, S., “Research on Impedance Control Based on Force Servo for Single Leg of Hydraulic Legged Robot,” 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan (2017) pp. 15911596.CrossRefGoogle Scholar
Irawan, A. and Nonami, K., “Optimal impedance control based on body inertia for a hydraulically driven hexapod robot walking on uneven and extremely soft terrain,” J. Field Rob. 28(5), 690713 (2011).CrossRefGoogle Scholar
Hyun, D. J. et al., “High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah,” Int. J. Rob. Res. 33(11), 14171445 (2014).CrossRefGoogle Scholar
Zhang, T. et al., “Development and experimental evaluation of multi-fingered robot hand with adaptive impedance control for unknown environment grasping,” Robotica 34(5), 11681185 (2016).CrossRefGoogle Scholar
Hou, M. et al., “Strategies to Optimize Fingertip Force for Impedance Control of Robot Hand Based on EtherCAT,” Proceedings of the 2014 Asia-Pacific Conference on Computer Science and Applications (CSAC 2014), Shanghai, China (2014).Google Scholar
Kurek, D. A. and Asada, H. H., “The MantisBot: Design and Impedance Control of Supernumerary Robotic Limbs for Near-Ground Work,” 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, Singapore (2017) pp. 59425947.CrossRefGoogle Scholar
Wei, B. et al., “An improved variable spring balance position impedance control for a complex docking structure,” Int. J. Soc. Rob. 8(5), 619629 (2016).CrossRefGoogle Scholar