Published online by Cambridge University Press: 31 July 2014
Biped walking can be regarded as a global limit cycle whose stability is difficult to verify by only local sensory feedback. This paper presents a control strategy combining global sensory reflex and leg synchronization. The inverted pendulum angle is utilized as global motion feedback to ensure global stability, and joint synchronization between legs is designed to stabilize bifurcations. The proposed strategy can achieve a stable gait and stabilize bifurcations. The robustness of this approach was evaluated against external disturbances. Walking experiments of a biped actuated by pneumatic muscles were conducted to confirm the validity of the proposed method. Instead of tracking predetermined trajectories, this method uses sensory reflexes to activate motor neurons and coincides with the biological idea wherein inessential degrees-of-freedom are barely controlled rather than strictly controlled.