Hostname: page-component-65b85459fc-5fwlf Total loading time: 0 Render date: 2025-10-15T17:54:40.635Z Has data issue: false hasContentIssue false

Workspace analysis of a 6-degree-of-freedom hybrid robot with two parallel modules

Published online by Cambridge University Press:  15 October 2025

Kirill Mukhin
Affiliation:
Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russia
Anton Antonov
Affiliation:
Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russia
Alexey Fomin*
Affiliation:
Mechanical Engineering Research Institute of the Russian Academy of Sciences, Moscow, Russia
*
Corresponding author: Alexey Fomin; Email: alexey-nvkz@mail.ru

Abstract

Workspace analysis is a crucial step in designing any robotic system and ensuring its safe operation. This article analyzes the workspace of a six degree-of-freedom (6-DOF) hybrid robot, which includes two separate modules with parallel architectures placed above each other. The upper module is a 4-DOF Delta-type parallel mechanism, and the lower module is a 2-DOF rotary mechanism with a circular rail. With this design, the hybrid robot represents a relative manipulation system, and workspace analysis is performed in the relative motion of the modules. This approach differs from other similar studies that combine the workspaces determined for each module independently, and we propose a method and derive results more suitable for practical use. To solve the workspace analysis problem, the paper develops a discretization-based approach, which considers all mechanical constraints. These constraints include joint constraints of each module and link interference between the modules. To analyze this interference, we apply the Gilbert–Johnson–Keerthi algorithm and represent the links as convex polytopes. Multiple numerical examples illustrate the developed techniques and show the translation and orientation workspaces of the robot for various relative configurations of its modules. Computer-aided-design simulations validate the proposed theoretical algorithms. The results demonstrate that the link interference between the modules, often ignored in other works, limits the workspace and should be considered for the proper workspace evaluation and design of similar hybrid robots.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Wang, B., Li, P., Yang, C., Hu, X. and Zhao, Y., “Robotica: decoupled elastostatic stiffness modeling of hybrid robots,” Robotica 42(7), 23092327 (2024). doi: 10.1017/S0263574724000675.CrossRefGoogle Scholar
Kumar, S., Müller, A. and Kirchner, F., Biologically Inspired Series-Parallel Hybrid Robots (Academic Press, London, 2025). doi: 10.1016/C2020-0-02362-5.Google Scholar
Van Toan, N. and Khoi, P. B., “A control solution for closed-form mechanisms of relative manipulation based on fuzzy approach,” Int. J. Adv. Robot. Syst. 16(2) (2019). doi: 10.1177/1729881419839810.CrossRefGoogle Scholar
Glazunov, V. A., Lastochkin, A. B., Shalyukhin, K. A. and Danilin, P. O., “Analysis and classification of relative manipulation devices,” J. Mach. Manuf. Reliab. 38(4), 379382 (2009). doi: 10.3103/S1052618809040141.CrossRefGoogle Scholar
Wu, Y., Wang, H. and Li, Z., “Quotient kinematics machines: concept, analysis, and synthesis,” J. Mech. Robot. 3(4), 041004 (2011). doi: 10.1115/1.4004891.CrossRefGoogle Scholar
Huang, H., Deng, Z., Li, B. and Liu, R., “Analysis and synthesis of a kind of mobility reconfigurable robot with multi-task capability,” J. Adv. Mech. Des. Syst. Manuf. 5(2), 87102 (2011). doi: 10.1299/jamdsm.5.87.CrossRefGoogle Scholar
Carbonari, L., Callegari, M., Palmieri, G. and Palpacelli, M.-C., “A new class of reconfigurable parallel kinematic machines,” Mech. Mach. Theory 79, 173183 (2014). doi: 10.1016/j.mechmachtheory.2014.04.011.CrossRefGoogle Scholar
Liu, Q., Liu, H., Xiao, J., Tian, W., Ma, Y. and Li, B., “Open-architecture of CNC system and mirror milling technology for a 5-axis hybrid robot,” Robot. Comput. Integr. Manuf. 81, 102504 (2023). doi: 10.1016/j.rcim.2022.102504.CrossRefGoogle Scholar
Ma, S., Xiao, J., Liu, H., Liu, S. and Tian, Y., “Modeling and analysis for time-varying dynamics of thin-walled workpieces in mirror milling considering material removal,” Sci. China Technol. Sci. 66(7), 18831898 (2023). doi: 10.1007/s11431-022-2360-6.CrossRefGoogle Scholar
Dogar, M., Spielberg, A., Baker, S. and Rus, D., “Multi-robot grasp planning for sequential assembly operations,” Auton. Robots 43(3), 649664 (2019). doi: 10.1007/s10514-018-9748-z.CrossRefGoogle Scholar
He, Y., Wu, M. and Liu, S., “A cooperative optimization strategy for distributed multi-robot manipulation with obstacle avoidance and internal performance maximization,” Mechatronics 76, 102560 (2021). doi: 10.1016/j.mechatronics.2021.102560.CrossRefGoogle Scholar
Isa, M. A. and Lazoglu, I., “Five-axis additive manufacturing of freeform models through buildup of transition layers,” J. Manuf. Syst. 50, 6980 (2019). doi: 10.1016/j.jmsy.2018.12.002.CrossRefGoogle Scholar
Zhao, D., Zhu, G., He, J. and Guo, W., “An initial feasibility study into ray-based slicing for revolving thin-wall parts using a rotary 3D printer,” Rapid Prototyp. J. 29(1), 128144 (2023). doi: 10.1108/RPJ-09-2021-0226.CrossRefGoogle Scholar
Saeidi, H., Opfermann, J. D., Kam, M., Wei, S., Leonard, S., Hsieh, M. H., Kang, J. U. and Krieger, A., “Autonomous robotic laparoscopic surgery for intestinal anastomosis,” Sci. Robot. 7(62), eabj2908 (2022). doi: 10.1126/scirobotics.abj2908.CrossRefGoogle ScholarPubMed
Asadizeidabadi, A., Hosseini, S., Vetshev, F., Osminin, S. and Hosseini, S., “Comparison of da Vinci 5 with previous versions of da Vinci and Sina: a review,” Laparosc. Endosc. Robot. Surg. 7(2), 6065 (2024). doi: 10.1016/j.lers.2024.04.006.CrossRefGoogle Scholar
Russo, M. and Ceccarelli, M., “A geometrical formulation for the workspace of parallel manipulators,” Robotica 40(8), 25812591 (2022). doi: 10.1017/S0263574721001806.CrossRefGoogle Scholar
Ennaiem, F., Chaker, A., Sandoval, J., Mlika, A., Romdhane, L., Bennour, S., Zeghloul, S. and Laribi, M. A., “A hybrid cable-driven parallel robot as a solution to the limited rotational workspace issue,” Robotica 41(3), 850868 (2023). doi: 10.1017/S0263574722000923.CrossRefGoogle Scholar
Li, Q., Yang, C., Xu, L. and Ye, W., Performance Analysis and Optimization of Parallel Manipulators (Springer, Singapore, 2023). doi: 10.1007/978-981-99-0542-3.CrossRefGoogle Scholar
Erastova, K., “Effective workspaces of parallel robots,” Robotica 40(12), 43084325 (2022). doi: 10.1017/S0263574722000911.CrossRefGoogle Scholar
Rosyid, A., El-Khasawneh, B. and Alazzam, A., “Review article: performance measures of parallel kinematics manipulators,” Mech. Sci. 11(1), 4973 (2020). doi: 10.5194/ms-11-49-2020.CrossRefGoogle Scholar
Tsai, L.-W. and Joshi, S., “Kinematic analysis of 3-DOF position mechanisms for use in hybrid kinematic machines,” J. Mech. Des. 124(2), 245253 (2002). doi: 10.1115/1.1468860.CrossRefGoogle Scholar
Kucuk, S., “Dexterous workspace optimization for a new hybrid parallel robot manipulator,” J. Mech. Robot. 10(6), 064503 (2018). doi: 10.1115/1.4041334.CrossRefGoogle Scholar
Chaudhury, A. N. and Ghosal, A., “Optimum design of multi-degree-of-freedom closed-loop mechanisms and parallel manipulators for a prescribed workspace using Monte Carlo method,” Mech. Mach. Theory 118, 115138 (2017). doi: 10.1016/j.mechmachtheory.2017.07.021.CrossRefGoogle Scholar
Zhang, D. and Wei, B., “Modelling and optimisation of a 4-DOF hybrid robotic manipulator,” Int. J. Comput. Integr. Manuf. 30(11), 11791189 (2017). doi: 10.1080/0951192X.2017.1305505.CrossRefGoogle Scholar
Ye, H., Wang, D., Wu, J., Yue, Y. and Zhou, Y., “Forward and inverse kinematics of a 5-DOF hybrid robot for composite material machining,” Robot. Comput. Integr. Manuf. 65, 101961 (2020). doi: 10.1016/j.rcim.2020.101961.CrossRefGoogle Scholar
Smits, J., Reynaerts, D. and Poorten, E. V., “Synthesis and methodology for optimal design of a parallel remote center of motion mechanism: application to robotic eye surgery,” Mech. Mach. Theory 151, 103896 (2020). doi: 10.1016/j.mechmachtheory.2020.103896.CrossRefGoogle Scholar
Pisla, D., Szilaghyi, A., Vaida, C. and Plitea, N., “Kinematics and workspace modeling of a new hybrid robot used in minimally invasive surgery,” Robot. Comput. Integr. Manuf. 29(2), 463474 (2013). doi: 10.1016/j.rcim.2012.09.016.CrossRefGoogle Scholar
Rastegarpanah, A., Rakhodaei, H., Saadat, M., Rastegarpanah, M., Marturi, N., Borboni, A. and Loureiro, R. C. V., “Path-planning of a hybrid parallel robot using stiffness and workspace for foot rehabilitation,” Adv. Mech. Eng. 10(1) (2018). doi: 10.1177/1687814017754159.CrossRefGoogle Scholar
Schreiber, L.-T. and Gosselin, C., “Kinematically redundant planar parallel mechanisms: kinematics, workspace and trajectory planning,” Mech. Mach. Theory 119, 91105 (2018). doi: 10.1016/j.mechmachtheory.2017.08.022.CrossRefGoogle Scholar
Xu, P., Cheung, C. F., Wang, C. and Zhao, C., “Novel hybrid robot and its processes for precision polishing of freeform surfaces,” Precis. Eng. 64, 5362 (2020). doi: 10.1016/j.precisioneng.2020.03.013.CrossRefGoogle Scholar
Zhang, H., Fang, H., Fang, Y. and Jiang, B., “Workspace analysis of a hybrid kinematic machine tool with high rotational applications,” Math. Probl. Eng. 2018, 2607497 (2018). doi: 10.1155/2018/2607497.Google Scholar
Qin, Z., Liu, Z., Liu, Y., Gao, H., Sun, C. and Sun, G., “Workspace analysis and optimal design of dual cable-suspended robots for construction,” Mech. Mach. Theory 171, 104763 (2022). doi: 10.1016/j.mechmachtheory.2022.104763.CrossRefGoogle Scholar
Chawla, I., Pathak, P. M., Notash, L., Samantaray, A. K., Li, Q. and Sharma, U. K., “Workspace analysis and design of large-scale cable-driven printing robot considering cable mass and mobile platform orientation,” Mech. Mach. Theory 165, 104426 (2021). doi: 10.1016/j.mechmachtheory.2021.104426.CrossRefGoogle Scholar
Mukhin, K., Antonov, A. and Fomin, A., “Mechanism design and inverse kinematics of a 6-DOF hybrid robot with two parallel modules,” In: Robotics and Mechatronics (Romdhane, L., Mlika, A., Zeghloul, S., Chaker, A. and Laribi, M. A., eds.) (Springer, Cham, 2024) pp. 309318. doi: 10.1007/978-3-031-59888-3_28.CrossRefGoogle Scholar
Laryushkin, P. A., Erastova, K. G., Filippov, G. S. and Kheylo, S. V., “Calculation of Delta-type mechanisms with linear actuators and different numbers of degrees of freedom,” J. Mach. Manuf. Reliab. 48(3), 204210 (2019). doi: 10.3103/S1052618819030105.CrossRefGoogle Scholar
Laryushkin, P. A., “Experimental study of force transfer in a Delta-type mechanism with four degrees of freedom,” J. Mach. Manuf. Reliab. 50(5), 379387 (2021). doi: 10.3103/S1052618821050071.CrossRefGoogle Scholar
Laryushkin, P., Fomin, A. and Antonov, A., “Kinematic and singularity analysis of a 4-DOF Delta-type parallel robot,” J. Braz. Soc. Mech. Sci. Eng. 45(4), 218 (2023). doi: 10.1007/s40430-023-04128-7.CrossRefGoogle Scholar
Laryushkin, P., Fomin, A., Antonov, A. and Glazunov, V., “Virtual and physical prototyping of the 4-DOF Delta-type parallel robot based on the criteria of closeness to singularity,” In: Proceedings of MSR-RoManSy 2024 (Larochelle, P., McCarthy, J. M. and Lusk, C. P., eds.) (Springer, Cham, 2024) pp. 167178. doi: 10.1007/978-3-031-60618-2_14.CrossRefGoogle Scholar
Xu, C. C., Xue, C. and Duan, X. C., “A novel 2R parallel mechanism for alt-azimuth pedestal,” IOP Conf. Ser. Mater. Sci. Eng. 428(1), 012053 (2018). doi: 10.1088/1757-899X/428/1/012053.CrossRefGoogle Scholar
He, S., Duan, X., Qu, X. and Xiao, J., “Kinematic modeling and motion control of a parallel robotic antenna pedestal,” Robotica 41(11), 32753295 (2023). doi: 10.1017/S0263574723000917.CrossRefGoogle Scholar
Laryushkin, P., Antonov, A., Fomin, A. and Glazunov, V., “Novel reconfigurable spherical parallel mechanisms with a circular rail,” Robotics 11(2), 30 (2022). doi: 10.3390/robotics11020030.CrossRefGoogle Scholar
Laryushkin, P., Antonov, A., Fomin, A. and Glazunov, V., “Inverse and forward kinematics of a reconfigurable spherical parallel mechanism with a circular rail,” In: ROMANSY 24 - Robot Design, Dynamics and Control (Kecskeméthy, A. and Parenti-Castelli, V., eds.) (Springer, Cham, 2022) pp. 246254. doi:10.1007/978-3-031-06409-8_26.CrossRefGoogle Scholar
Brem, I. V., Laryushkin, P. A., Fomin, A. S. and Antonov, A. V., “Design, mobility and kinematic analysis of a 4-DOF 3R1T redundantly actuated foldable parallel manipulator with a circular rail,” In: Proceedings of the 2024 6th International Conference on Reconfigurable Mechanisms and Robots (ReMAR) (Chicago, IL, USA, 2024) pp. 309314. doi: 10.1109/ReMAR61031.2024.10617927.CrossRefGoogle Scholar
Shen, Y., Ren, J., Huang, N., Zhang, Y., Zhang, X. and Zhu, L., “Surface form inspection with contact coordinate measurement: A review,” Int. J. Extrem. Manuf. 5(2), 022006 (2023). doi: 10.1088/2631-7990/acc76e.CrossRefGoogle Scholar
Shang, H., Liu, C. and Wang, R., “Measurement methods of 3D shape of large-scale complex surfaces based on computer vision: a review,” Measurement 197, 111302 (2022). doi: 10.1016/j.measurement.2022.111302.CrossRefGoogle Scholar
Nabavi, S. N., Akbarzadeh, A. and Enferadi, J., “A study on kinematics and workspace determination of a general 6-PUS robot,” J. Intell. Robot. Syst. 91(3–4), 351362 (2018). doi: 10.1007/s10846-017-0704-5.CrossRefGoogle Scholar
Zhou, Y., Niu, J., Liu, Z. and Zhang, F., “A novel numerical approach for workspace determination of parallel mechanisms,” J. Mech. Sci. Technol. 31(6), 30053015 (2017). doi: 10.1007/s12206-017-0544-z.CrossRefGoogle Scholar
Modak, S. and K, R. K., “Kinematics and singularity analysis of a novel hybrid industrial manipulator,” Robotica 42(2), 579610 (2024). doi: 10.1017/S0263574723001662.CrossRefGoogle Scholar
Cao, Y., Huang, Z., Zhou, H. and Ji, W., “Orientation workspace analysis of a special class of the Stewart–Gough parallel manipulators,” Robotica 28(7), 9891000 (2010). doi: 10.1017/S0263574709990841.CrossRefGoogle Scholar
Bonev, I. A. and Gosselin, C. M., “Analytical determination of the workspace of symmetrical spherical parallel mechanisms,” IEEE Trans. Robot. 22(5), 10111017 (2006). doi: 10.1109/TRO.2006.878983.CrossRefGoogle Scholar
Lynch, K. M. and Park, F. C., Modern Robotics: Mechanics, Planning, and Control (Cambridge University Press, Cambridge, 2017). doi: 10.1017/9781316661239.CrossRefGoogle Scholar
Jiménez, P., Thomas, F. and Torras, C., “3D collision detection: a survey,” Comput. Graph. 25(2), 269285 (2001). doi: 10.1016/S0097-8493(00)00130-8.CrossRefGoogle Scholar
Kockara, S., Halic, T., Iqbal, K., Bayrak, C. and Rowe, R., “Collision detection: a survey,” In: Proceedings of the 2007 IEEE International Conference on Systems, Man and Cybernetics (Montreal, QC, Canada, 2007) pp. 40464051. doi: 10.1109/ICSMC.2007.4414258.CrossRefGoogle Scholar
Gilbert, E. G., Johnson, D. W. and Keerthi, S. S., “A fast procedure for computing the distance between complex objects in three-dimensional space,” IEEE J. Robot. Autom. 4(2), 193203 (1988). doi: 10.1109/56.2083.CrossRefGoogle Scholar
Van den Bergen, G., “A fast and robust GJK implementation for collision detection of convex objects,” J. Graph. Tools 4(2), 725 (1999). doi: 10.1080/10867651.1999.10487502.CrossRefGoogle Scholar
Ericson, C., Real-Time Collision Detection (CRC Press, Boca Raton, 2004). doi: 10.1201/b14581.CrossRefGoogle Scholar
Montaut, L., Lidec, Q. L., Petrik, V., Sivic, J. and Carpentier, J., “Collision detection accelerated: an optimization perspective,” In: Robotics: Science and Systems (New York City, NY, USA, 2022). doi: 10.15607/RSS.2022.XVIII.039.Google Scholar
Merlet, J.-P., Parallel Robots, 2nd ed. (Springer, Dordrecht, 2006). doi: 10.1007/1-4020-4133-0.Google Scholar
Bonev, I. A., Zlatanov, D. and Gosselin, C. M., “Advantages of the modified Euler angles in the design and control of PKMs,” In: Proceedings of the 2002 Parallel Kinematic Machines International Conference (Chemnitz, 2002) pp. 171188. https://scholar.google.com/scholar?cluster=6499751952328294897.Google Scholar
Bezanson, J., Edelman, A., Karpinski, S. and Shah, V. B., “Julia: a fresh approach to numerical computing,” SIAM Rev. 59(1), 6598 (2017). doi: 10.1137/141000671.CrossRefGoogle Scholar
Gilbert, E. G. and Foo, C.-P., “Computing the distance between general convex objects in three-dimensional space,” IEEE Trans. Robot. Autom. 6(1), 5361 (1990). doi: 10.1109/70.88117.CrossRefGoogle Scholar
Cameron, S., “Enhancing GJK: computing minimum and penetration distances between convex polyhedra,” In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation 4 (Albuquerque, NM, USA, 1997) pp. 31123117. doi:10.1109/ROBOT.1997.606761.Google Scholar
Montanari, M., Petrinic, N. and Barbieri, E., “Improving the GJK algorithm for faster and more reliable distance queries between convex objects,” ACM Trans. Graph 36(3), 117 (2017). doi: 10.1145/3083724.CrossRefGoogle Scholar
Montaut, L., Lidec, Q. L., Petrik, V., Sivic, J. and Carpentier, J., “GJK++: leveraging acceleration methods for faster collision detection,” IEEE Trans. Robot. 40, 25642581 (2024). doi: 10.1109/TRO.2024.3386370.CrossRefGoogle Scholar
Kolte, A. M., Ramesh, S. and Bandyopadhyay, S., “Analytical derivation of singularity-free tubes in the constant-orientation workspace of 6-6 Stewart platform manipulators,” Robotica 42(11), 38393866 (2024). doi: 10.1017/S026357472400167X.CrossRefGoogle Scholar
Conconi, M. and Carricato, M., “A new assessment of singularities of parallel kinematic chains,” IEEE Trans. Robot. 25(4), 757770 (2009). doi: 10.1109/TRO.2009.2020353.CrossRefGoogle Scholar
Voglewede, P. A. and Ebert-Uphoff, I., “Overarching framework for measuring closeness to singularities of parallel manipulators,” IEEE Trans. Robot. 21(6), 10371045 (2005). doi: 10.1109/TRO.2005.855993.CrossRefGoogle Scholar
Bu, W., “Closeness to singularities of manipulators based on geometric average normalized volume spanned by weighted screws,” Robotica 35(7), 16161626 (2017). doi: 10.1017/S0263574716000345.CrossRefGoogle Scholar