Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T16:45:50.456Z Has data issue: false hasContentIssue false

A worm-inspired new spatial hyper-redundant manipulator

Published online by Cambridge University Press:  13 August 2010

Jaime Gallardo-Alvarado*
Affiliation:
Instituto Tecnológico de Celaya, Department of Mechanical Engineering, Av. Tecnológico y García Cubas, 38010 Celaya, GTO, Mexico
Raúl Lesso-Arroyo
Affiliation:
Instituto Tecnológico de Celaya, Department of Mechanical Engineering, Av. Tecnológico y García Cubas, 38010 Celaya, GTO, Mexico
J. Santos García-Miranda
Affiliation:
Instituto Tecnológico de Celaya, Department of Mechanical Engineering, Av. Tecnológico y García Cubas, 38010 Celaya, GTO, Mexico
*
*Corresponding author. E-mail: gjaime@itc.mx

Summary

In this work a novel spatial hyper-redundant manipulator inspired in the motions of the worms is introduced. The displacement analysis is presented in a semi-closed form solution, whereas the velocity and acceleration analyses are carried out by means of the theory of screws. Among typical applications of most hyper-redundant manipulators, interesting biomechanical applications such as the simulation of the motion of the spine are available for this new artificial worm.

Type
Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chirikjian, G. S., Theory and Applications of Hyper-Redundant Robotic Manipulators Ph.D. Thesis (California Institute of Technology, 1992).Google Scholar
2.Ionescu, T., “Standardization of terminology,” Mech. Mach. Theory 38, 607682 (2003).Google Scholar
3.Chirikjian, G. S. and Burdick, J. W., “Kinematics of Hyper-Redundant Locomotion with Applications to Grasping,” Proceedings IEEE International Conference on Robotics and Automation, Sacramento, CA (1991) pp. 720727.Google Scholar
4.Pettinato, J. S. and Stephanou, H. E., “Manipulability and Stability of a Tentacle Based Robot Manipulator,” Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, AZ (1989), vol. 1, pp. 458463.Google Scholar
5.Paljug, E., Ohm, T. and Hayati, S., “The JPL Serpentine Robot: A 12-DOF System for Inspection,” Proceedings of the IEEE International Conference on Robotics and Automation, Nagoya, Japan (1995), pp. 31433148.Google Scholar
6.Kyriakopoulos, K. J., Migadis, G. and Sarrigeorgidis, K., “The NTUA snake: Design, planar kinematics and motion planning,” J. Robot. Syst. 16, 3772 (1999).3.0.CO;2-V>CrossRefGoogle Scholar
7.Hanan, M. W. and Walker, I. A., “Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots,” J. Robot. Syst. 20, 4563 (2003).CrossRefGoogle Scholar
8.Zimmermann, K. and Zeidis, I., “Worm-like locomotion as a problem of nonlinear dynamics,” J. Theor. Appl. Mech. 45, 179187 (2007).Google Scholar
9.Zimmermann, K., Zeidis, I., Steigenberger, J., Behn, C., Böhm, V., Popp, J., Kolev, E. and Naletova, V. A., “Worm-Like Locomotion Systems (WLLS)—Theory, Control and Prototypes,” In: Climbing & Walking Robots, Towards New Applications (Zhang, H., ed.) (Itech Education and Publishing, Vienna, Austria, 2007) pp. 429456.Google Scholar
10.Behn, C. and Zimmermann, K., “Worm-Like locomotion Systems at the TU Ilmenau,” Proceedings of the 12th IFToMM World Congress, Besancon (2007).Google Scholar
11.Panjabi, M. M. and White, A. A., “Basic biomechanics of the spine,” Neurosurgery 7, 7693 (1980).CrossRefGoogle ScholarPubMed
12.Dimnet, J., Pasquet, A., Krag, M. H. and Panjabi, M. M., “Cervical spine motion in the sagittal plane: Kinematic and geometric parameters,” J. Biomech. 15, 959969 (1982).CrossRefGoogle ScholarPubMed
13.Gracovetsky, S. and Farfan, H., 1986The optimum spine,” Spine 11, 543.CrossRefGoogle ScholarPubMed
14.Cholewicki, J. and McGill, S. M., “Lumbar spine kinematics obtained from videofluoroscopy,” J. Biomech. 25, 801 (1992).CrossRefGoogle Scholar
15.Yoganandan, N., Pintar, F., Maiman, D. J., Reinartz, J., Sances, A., Larson, S. J. and Cusick, J. F., “Kinematics of the lumbar spine following pedicle screw plate fixation,” Spine 18, 504512 (1993).CrossRefGoogle ScholarPubMed
16.Levin, S. M., “The Importance of Soft Tissue for Structural Support of the Body,” In: Prolotherapy in the Lumbar Spine and Pelvis, Spine: State of the Art Reviews (Dorman, T. A., ed.) (1995), vol. 9, issue 2, p. 357.Google Scholar
17.Willems, J. M., Jull, G. A. and Ng, J. K.-F., “An in vivo study of the primary and coupled rotations of the thoracic spine,” Clin. Biomech. 11 (6), 311316 (1996).CrossRefGoogle Scholar
18.Faber, M. J., Schamhardt, H. C. and van Weeren, P. R., “Determination of 3D spinal kinematics without defining a local vertebral coordinate system,” J. Biomech. 32, 13551358 (1999).CrossRefGoogle ScholarPubMed
19.Garcia, T. and Ravani, B., “A biomechanical evaluation of whiplash using a multi-body dynamic model,” ASME J. Biomech. Eng. 125, 254265 (2003).CrossRefGoogle ScholarPubMed
20.Yoshikawa, H., Ishii, T., Mukai, Y., Hosono, N., Sakaura, H., Nakajima, Y., Sato, Y. and Sugamoto, K., “Kinematics of the upper cervical spine in rotation: In vivo three-dimensional analysis,” Spine 29, E139E144 (2004).Google Scholar
21.Ziddiqui, M., Karadimas, E., Nicol, M., Smith, F. W. and Wardlaw, D., “Effects of X-stop device on sagittal lumbar spine kinematics in spinal stenosis,” J. Spinal Disorden Technol. 19, 328333 (2006).Google Scholar
22.Ishii, T., Mukai, Y., Hosono, N., Sakaura, H., Fujii, R., Nakajima, Y., Tamura, S., Iwasaki, M., Yoshikawa, H. and Sugamoto, K., “Kinematics of the cervical spine in lateral bending: In vivo three-dimensional analysis,” Spine 31, 155160 (2006).CrossRefGoogle ScholarPubMed
23.Konz, R. J., Fatone, S., Stine, R. L., Ganju, A., Gard, S. A. and Ondra, S. L., “A kinematic model to assess spinal motion during walking,” Spine 31, E898E906 (2006).CrossRefGoogle ScholarPubMed
24.Chanceya, V. C., Ottaviano, D., Myers, B. S. and Nightingale, R. W., “A kinematic and anthropometric study of the upper cervical spine and the occipital condyles,” J. Biomech. 40, 19531959 (2007).CrossRefGoogle Scholar
25.Gill, K. P., Bennett, S. J., Savelsbergh, G. J. P. and van Dieën, J. H., “Regional changes in spine posture at lift onset with changes in lift distance and lift style,” Spine 32, 15991604 (2007).CrossRefGoogle ScholarPubMed
26.Jones, M., Holt, C. and Franyuti, D., “Developing a methodology for the analysis of infant spine kinematics for the investigation of the shaken baby syndrome,” J. Biomech. 41, S355 (2008).CrossRefGoogle Scholar
27.Iqbal, K. and Roy, A., “A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model,” ASME J. Biomech. Eng. 131, 011002 (2009).CrossRefGoogle Scholar
28.Zhu, S. J., Huang, Z. and Zhao, M. Y., “Feasible Human Spine Motion Simulators Based on Parallel Manipulators,” In: Parallel Manipulators, Towards New Applications (Wu, H., ed.) (I-Tech Education and Publishing, Vienna, Austria, 2008) pp. 497506.Google Scholar
29.Wolf, A., Brown, H. B., Casciola, R., Costa, A., Schwerin, M., Shamas, E. and Choset, H., “A Mobile Hyper Redundant Mechanism for Search and Rescue Tasks,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada (2003) pp. 28892895.Google Scholar
30.Chirikjian, G. S. and Burdick, J. W., “A modal approach to hyper-redundant kinematics,” IEEE Trans. Robot. Autom. 10, 343354 (1994).CrossRefGoogle Scholar
31.Chirikjian, G. S. and Burdick, J. W., “Kinematically optimal hyper-redundant manipulator configurations,” IEEE Trans. Robot. Autom. 11, 794806 (1995).CrossRefGoogle Scholar
32.Burdick, J. W., Radford, J. and Chirikjian, G. S., “A ‘sidewinding’ locomotion gait for hyper-redundant robots,” Adv. Robot. 9, 195216 (1995).CrossRefGoogle Scholar
33.Wohlhart, K., “Displacement analysis of the general spherical Stewart platform,” Mech. Mach. Theory 29, 581589 (1994).CrossRefGoogle Scholar
34.Gallardo-Alvarado, J., “Kinematics of a hybrid manipulator by means of screw theory,” Multibody Syst. Dyn. 14, 345366 (2005).CrossRefGoogle Scholar
35.Li, W., Gao, F. and Zhang, J., “R-CUBE, a decoupled parallel manipulator only with revolute joints,” Mech. Mach. Theory 40, 467473 (2005).CrossRefGoogle Scholar
36.Yang, G., I.-M. Chen, Chen, W. and Lin, W., “Kinematic design of a six-dof parallel-kinematics machine with decoupled-motion architecture,” IEEE Trans. Robot. 20, 876884 (2004).CrossRefGoogle Scholar
37.Walker, M. R. and Dickey, J. P., “New methodology for multi-dimensional spinal joint testing with a parallel robot,” Med. Biol. Eng. Comput. 45, 297304 (2007).CrossRefGoogle ScholarPubMed
38.Zhu, S. J., Huang, Z. and Zhao, M. Y., “Singularity analysis for six practicable 5-DoF fully-symmetrical parallel manipulators,” Mech. Mach. Theory 44, 710725 (2009).CrossRefGoogle Scholar
39.Innocenti, C. and Parenti-Castelli, V., “Direct position analysis of the Stewart platform mechanism,” Mech. Mach. Theory 35, 611621 (1990).CrossRefGoogle Scholar
40.Tsai, L.-W., Robot Analysis (John Wiley & Sons, New York, 1999).Google Scholar
41.Gallardo-Alvarado, J., Rodríguez-Castro, R. and Islam, Md. N., “Analytical solution of the forward position analysis of parallel manipulators that generate 3-RS structures,” Adv. Rob. 22, 215234 (2008).CrossRefGoogle Scholar
42.Gallardo-Alvarado, J., Aguilar-Nájera, C. R., Casique-Rosas, L., Pérez-González, L. and Rico-Martínez, J. M., “Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory,” Multibody Syst. Dyn. 20, 307325 (2008).CrossRefGoogle Scholar
43.Ball, R. S., A Treatise on the Theory of Screws (Cambridge University Press, Cambridge, 1900) (reprinted 1998).Google Scholar
44.Gallardo-Alvarado, J., Orozco-Mendoza, H. and Rodríguez-Castro, R., “Finding the jerk properties of multi-body systems using helicoidal vector fields,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 222, 22172229 (2008).CrossRefGoogle Scholar
45.Rico, J. M. and Duffy, J., “An Application of screw algebra to the acceleration analysis of serial chains,” Mech. Mach. Theory 31, 445457 (1996).Google Scholar
46.Alici, G. and Shirinzadeh, B., “Topology optimization and singularity analysis of a 3-SPS parallel manipulator with a passive constraining spherical joint,” Mech. Mach. Theory 39, 215235 (2004).CrossRefGoogle Scholar
47.Rico, J. M., Gallardo, J. and Duffy, J., “A determination of singular configurations of serial non-redundant manipulators, and their escapement from singularities using Lie roducts,” In: Computational Kinematics '95 (Merlet, J.-P. and Ravani, , eds.) (Kluwer Academic Publishers, Niza, France, 1995) pp. 143152.CrossRefGoogle Scholar
48.Rico, J. M., Gallardo, J. and Duffy, J., “Screw theory and higher order kinematic analysis of open serial and closed chains,” Mech. Mach. Theory 34, 559586 (1999).CrossRefGoogle Scholar
49.van Dieën, J. H., Toussaint, H. M., Maurice, C. and Mientjes, M., “Fatigue-related changes in the coordination of lifting and their effect on low-back load,” J. Motor Behav. 28, 304314 (1996).CrossRefGoogle ScholarPubMed