Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T18:43:53.705Z Has data issue: false hasContentIssue false

Burbury's Last Case: The Mystery of the Entropic Arrow

Published online by Cambridge University Press:  12 April 2010

Extract

Does not the theory of a general tendency of entropy to diminish [sic] take too much for granted? To a certain extent it is supported by experimental evidence. We must accept such evidence as far as it goes and no further. We have no right to supplement it by a large draft of the scientific imagination. (Burbury 1904, 49)

Type
Papers
Copyright
Copyright © The Royal Institute of Philosophy and the contributors 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, D. 1994. ‘The Foundations of Quantum Mechanics and the Approach to Thermodynamic Equilibrium’, British Journal for the Philosophy of Science, 45, 669677.CrossRefGoogle Scholar
Albert, D. 1998. ‘The Direction of Time’, paper presented to the Annual Meeting of the Eastern Division of the APA, Washington D.C., 12, 1998.Google Scholar
Bergmann, P. G. and Lebowitz, J. L. 1955. ‘New Approach to Non-equilibrium Processes’, Physical Review, 99, 578–87.CrossRefGoogle Scholar
Blatt, J. M. 1959. ‘An Alternative Approach to the Ergodic Problem’, Progress in Theoretical Physics, 22, 745–56.CrossRefGoogle Scholar
Boltzmann, L. 1877. ‘Über die Beziehung zwischen des zweiten Hauptsatze der mechanischen der Warmetheorie’ (‘On the Relation of a General Mechanical Theorem to the Second Law of Thermodynamics’), Sitzungsberichte, K. Akademie der Wissenschaften Wien, Math.-Naturwiss, 75, 6773 (reprinted in Brush 1966).Google Scholar
Boltzmann, L. 1895. ‘On Certain Questions of the Theory of Gases,’ Nature, 51, 413–15.CrossRefGoogle Scholar
Boltzmann, L. 1964. Lectures on Gas Theory, Berkeley: University of California PressCrossRefGoogle Scholar
Brush, S. 1966. Kineti, Theory. Volume 2: Irreversible Processes, Oxford: Pergamo Press.Google Scholar
Burbury, S. H., 1894. ‘Boltzmann's Minimum Function’, Nature, 51, 78.CrossRefGoogle Scholar
Burbury, S. H., 1895. ‘Boltzmann's Minimum Function’, Nature, 51, 320.CrossRefGoogle Scholar
Burbury, S. H., 1899. The Kinetic Theory of Gases, Cambridge: Cambridge Universit Press.Google Scholar
Burbury, S. H., 1903. ‘Mr J. H. Jeans’ ‘Theory of Gases’, Philosophical Magazine, Series 6, 6, 529–35.Google Scholar
Burbury, S. H., 1904: ‘On the Theory of Diminishing Entropy’, Philosophical Magazine, Series 6, 8, 4349.Google Scholar
Cocke, W. 1967. ‘Statistical Time Symmetry and Two-Time boundary Conditions in Physics and Cosmology’, Physical Review, 160, 11651170.CrossRefGoogle Scholar
Culverwell, E. 1890a. ‘Note on Boltzmann's Kinetic Theory of Gases, and on Si.W. Thomson's Address to Section A, British Association, 1884’, Philosophical Magazine, 30, 9599.Google Scholar
Culverwell, E. 1890b. ‘Possibility of Irreversible Molecular Motions’, Report of the British Association for the Advancement of Science, 60, 744.Google Scholar
Culverwell, E. 1894. ‘Dr. Watson's Proof of Boltzmann's Theorem on Permanence of Distributions’, Nature, 50, 617.CrossRefGoogle Scholar
Ehrenfest, P. and Ehrenfest, T. 1959. The Conceptual Foundations of the Statistical Approach in Mechanics. English translation by Moravcsik, M.J. (Ithaca, NY: Cornell University Press). Dove edn. 1990 (NewYork: Dover Publications).Google Scholar
Gell-Mann, M. and Hartle, J. 1994. ‘Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology,’ in Halliwell, Perez-Mercader, and Zurek (1994), pp. 311–45.Google Scholar
Gold, T. 1962. ‘The Arrow of Time,’ American Journal of Physics, 30 403–10.CrossRefGoogle Scholar
Gold, T. (ed.) 1963. The Nature of Time. Ithaca: Cornell Universite Press.Google Scholar
Hall, E.H. 1899. Review of S.H. Burbury, The Kinetic Theory of Gases (Cambridge: Cambridge University Press, 1899), Science, New Series, 10, 685–88.Google Scholar
Halliwell, J., Perez-Mercader, J. and Zurek, W. (eds), 1994. Physical Origins of Time Asymmetry, Cambridge: Cambridge Universite Press.Google Scholar
Jeans, J.H. 1903. ‘The Kinetic Theory of Gases developed from a New Standpoint’, Philosophical Magazine, Series 6, 5, 587620.Google Scholar
Lebowitz, J. 1993: ‘Boltzmann's Entropy and Time's Arrow’, Physics Today, 9: 93, 32–8.CrossRefGoogle Scholar
Price, H. 1996. Time's Arrow and Archimedes’ Point: New Directions for the Physics of Time, New York: Oxford Universite Press.Google Scholar
Price, H. 2002: ‘Boltzmann's Time Bomb’, British Journal for the Philosophy of Science, 53, 83119.CrossRefGoogle Scholar
Ridderbos, T.M. 1997. ‘The Wheeler-Feynman Absorber Theory: A Reinterpretation?’, Foundations of Physics Letters, 10, 473–86.CrossRefGoogle Scholar
Ridderbos, T.M. and Redhead, M. 1998. ‘The Spin-echo Experiments and the Second Law of Thermodynamics’, Foundations of Physics, 28, 1237–70.CrossRefGoogle Scholar
Schulman, L. 1997. Time's Arrows and Quantum Measurement, Cambridge: Cambridge Universite Press.CrossRefGoogle Scholar
Sklar, L. 1995. ‘The Elusive Object of Desire: in Pursuit of the Kinetic Equations and the Second Law’, in Savitt, S., (ed.), Time's Arrows Today., Cambridge: Cambridge University Press, 191216. Originally published in Fine, A. and Machamer, P., (eds), PSA 1986: Proceedings of the 1986 Biennial Meeting of the Philosophy of Science Association, vol. 2.CrossRefGoogle Scholar
von Weizsäcker, C. 1939. ‘Der zweite Hauptsatz und der Unterschied von der Vergangenheit und Zukunft,’ Annalen der Physik (5 Folge), 36, 275–83.CrossRefGoogle Scholar
von Weizsacker, C. 1980. The Unity of Nature, New York: Farrar Straus Giroux.Google Scholar