Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T18:33:24.814Z Has data issue: false hasContentIssue false

The Shaping of Interwar Physics by Technology: The Case of Piezoelectricity

Published online by Cambridge University Press:  05 September 2018

Shaul Katzir*
Affiliation:
Tel Aviv University E-mail: skatzir@tau.ac.il

Argument

Concentrating on the important developments of quantum physics, historians have overlooked other significant forces that shaped interwar physics, like that of technology. Based on the case of piezoelectricity, I argue that interests of users of technics (i.e. devices of methods) channeled research in physics into particular fields and questions relevant for industrial companies and governmental agencies. To recognize the effects of such social forces on physics, one needs to study the content of the scientific activity (both experimental and theoretical) of the researchers within its social and disciplinary contexts. By examining paths of individual scientists along with a study of the research in the field as a whole this paper exposes a range of reasons that led researchers to studies pertinent to technics. In particular, it shows that commercial, social, and military powers shaped interwar research through institutions aimed at fostering technology, some of them newly founded, and by a general view that academic research should help technology, a position that became more common at the time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, Ingrid. 1990. “Meißner, Alexander.Neue Deutsche Biographie 16:695–97.Google Scholar
Alumni Record of Wesleyan University, Middletown, Conn. 1921. 5th edition. New Haven CT: The Tuttle, Morehouse & Taylor Company.Google Scholar
Anduaga, Aitor. 2015. Geophysics, Realism, and Industry: How Commercial Interests Shaped Geophysical Conceptions, 1900–1960. Oxford: Oxford University Press.Google Scholar
Anon. 1933Contributors to This Issue.” Proceedings of the IRE 21:326.Google Scholar
Anon. 1942. “Contributors.” Proceedings of the IRE 30:528.Google Scholar
Anon. 1956. “The 70th Birthday of Prof. Dr. August Žáček.” Czechoslovak Journal of Physics 6:204–5.Google Scholar
Anon. 1963. “Albert Perrier.” Université Lausanne- Rapport Annuel 1961–1962, 5–6.Google Scholar
Anon. 1963b. Progress in Radio in Japan. Tokyo: Japanese National Committee for URSI.Google Scholar
Bauer, Arthur O. 2005. “Some Aspects of Precision Time Measurements, Controlled by Means of Piezo-Electric-Vibrators, as Deployed in Germany Prior to 1950.” Transactions of the Newcomen Society 75:119–38.Google Scholar
Becker, H. E. R. 1936. “Die Debye-Sears Beugungserscheinung und die Energiebilanz bei Erzeugung von Ultraschallwellen.” Annalen der Physik 25:373–84.Google Scholar
Beyer, Robert Thomas. 1999. Sounds of Our Times: Two Hundred Years of Acoustics. New York: American Institute of Physics.Google Scholar
Bigg, Charlotte. 2005. “L'optique de précision et la première guerre mondiale.” Schweizerische Zeitschrift für Geschichte 55:3445.Google Scholar
Cady, Walter G. 1922a. “Theory of Longitudinal Vibrations of Viscous Rods.” Physical Review 19:16.Google Scholar
Cady, Walter G. 1922b. “The Piezo-Electric Resonator.” Proceedings of the Institute of Radio Engineers 10:83114.Google Scholar
Cady, Walter G. 1924. “An International Comparison of Radio Wavelength Standards by Means of Piezo-Electric Resonators.” Proceedings of the Institute of Radio Engineers 12 (6):805–16.Google Scholar
Cady, Walter G. 1928. “Bibliography of Piezo-Electricity.” Proceedings of the Institute of Radio Engineers 15:521–35.Google Scholar
Cady, Walter G. 1946. Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals. New York: McGraw-Hill.Google Scholar
Cahan, David. 1989. An Institute for an Empire: The Physikalisch-Technische Reichsanstalt, 1871–1918. Cambridge: Cambridge University Press.Google Scholar
Carr, Percy H., and Earls, Lester T.. 1974. “Gerald W. Fox.” Physics Today 27 (4):135.Google Scholar
Coleman, Samuel K. 1990. “Riken from 1945 to 1948: The Reorganization of Japan's Physical and Chemical Research Institute under the American Occupation.” Technology and Culture 31 (2):228–50.Google Scholar
Doerffler, Heinz. 1930. “Biegungs-und Transversalschwingungen piezoelektrisch angeregter Quarzplatten.” Zeitschrift für Physik 63:3053.Google Scholar
Dolejšek, V., and Jahoda, M.. 1938. “Sur les variations du réseau des cristaux piézoélectriques produites par une tension électrique statique.” CR 206:113–15.Google Scholar
Dye, D W. 1926. “The Piezo-Electric Quartz Resonator and Its Equivalent Electrical Circuit.” Proceedings of the Physical Society of London 38:399458.Google Scholar
Feffer, Stuart. 1994. “Microscopes to Munitions: Ernst Abbe, Carl Zeiss, and the Transformation of Technical Optics, 1850–1914.” Ph.D. diss., University of California, Berkeley.Google Scholar
Forman, Paul. 1987. “Behind Quantum Electronics: National Security as Basis for Physical Research in the United States, 1940–1960.” Historical Studies in the Physical and Biological Sciences 18:149229.Google Scholar
Gerber, Stefan, John, Jürgen, and Stutz, Rüdiger. 2009. Traditionen, Brüche, Wandlungen: Die Universität Jena 1850–1995. Köln, Weimar: Böhlau Verlag.Google Scholar
Gibbs, R.E., and Thatte, V.N.. 1932. “The Temperature Variation of the Frequency of Piezoelectric Oscillations of Quartz.” Philosophical Magazine 14:682–94.Google Scholar
Giebe, E. 1926. “Leuchtende piezoelektrische Resonatoren als Hochfrequenznormale.” Zeitschrift für technische Physik 7:235.Google Scholar
Giebe, E., and Blechschmidt, E.. 1933. “Experimentelle und theoretische Untersuchungen über Dehnungseigenschwingungen von Stäben und Rohren (I u. II).” Annalen der Physik 18:417–56, 457–85.Google Scholar
Giebe, E., and Scheibe, A.. 1925a. “Eine einfache Methode zum qualitativen Nachweis der Piezoelektrizität von Kristallen.” Zeitschrift für Physik 33:760–66.Google Scholar
Giebe, E., and Scheibe, A.. 1925b. “Sichtbarmachung von hochfrequenten Longitudinalschwingungen piezoelektrischer Kristallstäbe.” Zeitschrift für Physik 33:335–44.Google Scholar
Giebe, E., and Scheibe, A.. 1928a. “Piezoelektrische Kristalle als Frequenznormale.” Elektrische Nachrichten-Technik 5:65–82.Google Scholar
Giebe, E., and Scheibe, A.. 1928b. “Piezoelektrische Erregung von Dehnungs-, Biegungs- und Drillungsschwingungen bei Quarzstäben.” Zeitschrift für Physik 46 (9–10):607–52.Google Scholar
Heilbron, John L., and Seidel, Robert W.. 1989. Lawrence and His Laboratory: A History of the Lawrence Berkeley Laboratory. Berkeley: University of California Press.Google Scholar
Hughes, Jeff. 1998. “Plasticine and Valves: Industry, Instrumentation and the Emergence of Nuclear Physics.” In The Invisible Industrialist, edited by Gaudillière, Jaen-Paul and Löwy, Ilana, 58101. London: Macmillan.Google Scholar
Ingersoll, L. R. 1929. “Earle Melvin Terry—1879-1929.” Science 69 (1797):592.Google Scholar
“Isaac Koga 1899–1982.” 1982. URSI, Information Bulletin, no. 222 (September):88–91.Google Scholar
Johnson, D. H. 2003. “Origins of the Equivalent Circuit Concept: The Voltage-Source Equivalent.” Proceedings of the IEEE 91:636–40.Google Scholar
Josephson, Paul R. 1991. Physics and Politics in Revolutionary Russia. California Studies in the History of Science Studies of the Harriman Institute. Berkeley: University of California Press.Google Scholar
Katzir, Shaul. 2006. The Beginnings of Piezoelectricity: A Study in Mundane Physics. Dordrecht: Springer.Google Scholar
Katzir, Shaul. 2008. “From Ultrasonic to Frequency Standards: Walter Cady's Discovery of the Sharp Resonance of Crystals.” Archive for History of Exact Sciences 62:469–87.Google Scholar
Katzir, Shaul. 2010. “War and Peacetime Research on the Road to Crystal Frequency Control.” Technology and Culture 51:99125.Google Scholar
Katzir, Shaul. 2012. “Who Knew Piezoelectricity? Rutherford and Langevin on Submarine Detection and the Invention of Sonar.” Notes and Records of the Royal Society 66:141–57.Google Scholar
Katzir, Shaul. 2016a. “Pursuing Frequency Standards and Control: The Invention of Quartz Clock Technologies.” Annals of Science 73:139.Google Scholar
Katzir, Shaul. 2016b. “Variations and Combinations: Invention and Development of Quartz Clock Technologies at AT&T.” Icon: Journal of the International Committee for the History of Technology 22:78122.Google Scholar
Katzir, Shaul. 2017. “‘In War or in Peace:’ The Technological Promise of Science Following the First World War.” Centaurus (59):223-37.Google Scholar
Kern, Ulrich. 1994. Forschung und Präzisionsmessung. Die Physikalisch-Technische Reichsanstalt zwischen 1918 Und 1948. Weinheim: VCH.Google Scholar
Kevles, Daniel J. 1995. The Physicists: The History of a Scientific Community in Modern America. 2nd ed. Cambridge MA: Harvard University Press.Google Scholar
Kirchhoff, Jochen. 2003. “Wissenschaftsförderung und forschungspolitische Prioritäten der Notgemeinschaft der Deutschen Wissenschaft 1920–1932.” Ph.D. diss., Ludwig-Maximilians-Universität München.Google Scholar
Kline, Ronald R. 1992. Steinmetz: Engineer and Socialist. Baltimore: The Johns Hopkins University Press.Google Scholar
Kohler, Robert E. 1992. Partners in Science: Foundations and Natural Scientists 1900–1945. Chicago: University of Chicago Press.Google Scholar
Lack, Fredrick R. 1929. “Observations on Modes of Vibration and Temperature Coefficients of Quartz Crystal Plates.” Proceedings of the Institute of Radio Engineers 17:1123–41.Google Scholar
Laue, Max von. 1925. “Piezoelektrisch erzwungene Schwingungen von Quarzstäben.” Zeitschrift für Physik 34:347–61.Google Scholar
Layton, Edwin T. 1987. “Through the Looking Glass, or News from Lake Mirror Image.” Technology and Culture 28:594607.Google Scholar
Le Grand, Yves. 1969. “Obituary, Ernest Baumgardt (1904-1969).” Vision Research 9 (11):1315–17.Google Scholar
Lucas, René. 1924Sur la piézoélectricité et la dissymétriemoléculaire,” Comptes rendus 17:1890–2.Google Scholar
Marcovich, Anne, and Shinn, Terry. 2012. “Regimes of Science Production and Diffusion: Towards a Transverse Organization of Knowledge.” Scientiae Studia 10:3364.Google Scholar
Marrison, Warren A. 1929. “A High Precision Standard of Frequency.” Proceedings of the Institute of Radio Engineers 17 (7):1101–22.Google Scholar
Meissner, Alexander. 1926. “Über piezo-elektrische Kristalle bei Hochfrequenz.” Zeitschrift für technische Physik 7:585–92.Google Scholar
Meissner, Alexander. 1927. “Über piezo-elektrische Kristalle bei Hochfrequenz IIZeitschrift für technische Physik 8:7477.Google Scholar
Namba, Y. 1930. “The Establishment of the Japanese Radio-Frequency Standard.” Proceedings of the IRE 18:1017–27.Google Scholar
Neprašová, Marie, and Rozsíval, Miroslav. 1955. “In Memory of Professor Dr. Václav Dolejšek.” Czechoslovak Journal of Physics 5:115–16.Google Scholar
Nitta, I. 1962. “Shoji Nishikawa (1884-1952)”. In 50 Years of X-Ray Diffraction, edited by Ewald, P. P., 328–324. Utrecht: N.V.A. Oosthoek.Google Scholar
Ny, Tsi-Zé. 1928. “Étude expérimentale des déformations et des changements de propriétés optiques du quartz sous l'influence du champ électrique.” Journal de physique et le radium 9 (1):1337.Google Scholar
Ny, Tsi-Zé, and Tsien, Ling-Chao. 1934a. “Oscillations with Hollow Quartz Cylinders Cut along the Optical Axis.” Nature 134:214–15.Google Scholar
Ny, Tsi-Zé, and Tsien, Ling-Chao. 1934b. “Sur le développement d’électricité par torsion dans les cristaux de quartz.” Comptes rendus de l'Académie des sciences (Paris) 198:1395–96.Google Scholar
Osterberg, Harold. 1933. “A Multiple Interferometer for Analyzing the Vibrations of a Quartz Plate.” Physical Review 43 (10):819–29.Google Scholar
Osterberg, Harold. 1936. “The Temperature Coefficients of Shear and Longitudinal Modes of Vibration.” Review of Scientific Instruments 7 (9):339–41.Google Scholar
Patterson, Samuel. 2008. “Kurt Heegner – Biographical Notes.” Mathematisches Forschungsinstitut Oberwolfach Report No. 24:154–56.Google Scholar
Petržílka, Václav. 1932. “Turmalinresonatoren Bei Kurzen Und Ultrakurzen Wellen.” Annalen Der Physik 15:7288.Google Scholar
Petržílka, Václav, and Žáček, August. 1938. “Radial and Torsional Vibrations of Annular Quartz Plates.” Philosophy Magazine 25.Google Scholar
Reich, Leonard S. 1983. “Irving Langmuir and the Pursuit of Science and Technology in the Corporate Environment.” Technology and Culture 24:199221.Google Scholar
Roblin, Gérard. 1996. “L'Institutd'Optique a 75 Ans.” Opto 118:1324.Google Scholar
Shinn, Terry. 2008. Research-Technology and Cultural Change: Instrumentation, Genericity, Transversality. Oxford: The Bardwell Press.Google Scholar
Straubel, H. 1932. “Fundamental Crystal Control for Ultra-High Frequencies.” QST (April)10–13.Google Scholar
The editor. 1970. “Sixty-Fifth Birthday of Professor Václav Petržílka.” Czechoslovak Journal of Physics B 20:369–74.Google Scholar
The Technical Information Division Naval Research Laboratory. 1998. “Highlights of NRL's First 75 Years.” www.nrl.navy.mil/content_images/75highlights.pdf. Last accessed June 17, 2018.Google Scholar
Van der Pol, Balthasar. 1926. “Het Gebruik van Piëzo-Electrische Kwarts-Kristallen in de Draadlooze Telegrafie En Telefonie.” In Gedenkboek Ter Herinnering Aan Het Tienjarig Bestaan van de Nederlandsche Vereeniging Voor Radiotelegrafie, 1916–1926. Nauta.Google Scholar
Van Dyke, Karl S. 1925. ‘The Electric Network of a Piezo-Electric Resonator’. Physical Review 25:895Google Scholar
Van Dyke, Karl S. 1928. ‘The Piezo-Electric Resonator and Its Equivalent Network.’’ Proceedings of the Institute of Radio Engineers 16 (6):742–64.Google Scholar
Vigoureux, Paul. 1931. Quartz Resonators and Oscillators. London: H.M. Stationery Office.Google Scholar
Vincenti, Walter G. 1990. What Engineers Know and How They Know It: Analytical Studies from Aeronautical History. Baltimore: The John Hopkins University Press.Google Scholar
Vizgin, Vladimir, and Frenkel, Viktor. 2002. “Vsevolod Frederiks, Pioneer of Relativism and Liquid Crystal Physics.” In Einstein Studies in Russia, edited by Balashov, Yuri and Vizgin, Vladimir, 149–80. Boston: Birkhäuser.Google Scholar
Wissant, André de. 1927. L'impartial, 19 July, p. 1.Google Scholar
Wittje, Roland. 2016. The Age of Electroacoustics: Transforming Science and Sound. Cambridge MA: MIT Press.Google Scholar
Yeang, Chen-Pang. 2013. Probing the Sky with Radio Waves: From Wireless Technology to the Development of Atmospheric Science. Chicago: University of Chicago press.Google Scholar