Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T18:43:49.511Z Has data issue: false hasContentIssue false

Impetus Mechanics as a Physical Argument for Copernicanism Copernicus, Benedetti, Galileo

Published online by Cambridge University Press:  26 September 2008

Michael Wolff
Affiliation:
Department of PhilosophyUniversity of Bielefeld

Abstract

One of the earliest arguments for Copernicanism was a widely accepted fact: that on a horizontal plane a body subject to no external resistance can be set in motion by the smallest of all possible forces. This fact was contrary to Aristotelian physics; but it was a physical argument (by abduction) for the possibility of the Copernican world system. For it would be explained if that system was true or at least possible.

Galileo argued: only nonviolent motions can be caused by the smallest of all possible forces; hence resistance-free horizontal motions are nonviolent; this confirms Copernicanism insofar as it designates the rotations of celestial spheres (being resistance-free horizontal motions) as nonviolent.

Galileo's argument was compatible with (and supportive of) the specific Copernican version of impetus mechanics; but it was also compatible with a (somewhat qualified) principle of inertia. Thus it promoted decisively the transition from impetus mechanics to classical inertial mechanics.

Type
Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aristotle, , 1919. Meteorologica, ed. Forbes, F. H., Cambridge, Mass.Google Scholar
Aristotle, , 1936. De Caelo, ed. Allen, D. J., Oxford Classical Texts, repr. with corrections 1955.Google Scholar
Aristotle, , 1936. Physics, a revised text with introduction and commentary by W. D. Ross, Oxford, repr. 1966.Google Scholar
Bacon, Francis [1620] 1860. Novum Organum, in The Works of Francis Bacon, ed. Spedding, J., Ellis, R. L., and Heath, D. D., vol. 4, London.Google Scholar
Benedetti, G. B., [1585] 1969. “Diversarum Speculationum Mathematicarum et Physicarum Liber” (Turin 1585) in Drake and Drabkin 1969.Google Scholar
Bordiga, G., 19251926. “Giovanni Battista Benedetti filosofo e mathematico veneziano des seculo XVI,” Atti del Reale Istituto Veneto di Scienze Lettere ed Arti 85: 585754.Google Scholar
Cardano, G., 1570. Opus Novum de Proportionibus Numerorum, Motuum, Ponderorum, Basel.Google Scholar
Cardano, G., [1662] 1967, Opera Omnia, vol. IV, The Lugduni Edition. Reprinted by: Johnson Repr. Corp., New York and London.Google Scholar
Carugo, Adriano and Crombie, A. C., 1983. “The Jesuits and Galileo' Ideas of Science of Nature,” Annali dell'istituto e Museo di Storia della Scienza di Firenze 8 (Fasc. 2): 5868.Google Scholar
Chalmers, A. and Nicholas, R., 1983. “Galileo on the Dissipative Effect of Rotating Earth,” Studies in History and Philosophy of Science 14: 315–40.CrossRefGoogle Scholar
Clagett, M., 1959. The Science of Mechanics in the Middle Ages, Madison: The University of Wisconsin Press.Google Scholar
Clavelin, Maurice, 1974. The Natural Philosophy of Galileo. Essay on the Origins and Formation of Classical Mechanics, Cambridge, Mass.: MIT Press.Google Scholar
Coffa, J. A., 1968. “Galileo's Concept of Inertia,” Physis 10: 261–81.Google Scholar
Cohen, I. Bernard, 1985. Revolution in Science, Cambridge, Mass.: Cambridge University Press.Google Scholar
Copernicus, Nicolaus, 1959. Über die Kreisbewegungen der Weltköorper, Erstes Buch, ed. Klaus, G., notes A. Birkenmajer, Berlin: Akademie Verlag.Google Scholar
Copernicus, Nicolaus, 1978. On the Revolutions, transl. and commentary by E. Rosen, ed. Dobrczyzki, Jerzy, Warsaw: Polish Scientific Publishers; London: The Macmillan Press Ltd..Google Scholar
Copernicus, Nicolaus, [1543] 1984. Nicolaus Copernicus Gesamtausgabe, ed. Nobis, H., vol. 2: De revolutionibus libri 6, ed. H. M. Nobis and Bernard Sticker, Hildesheim: Gerstenberg.Google Scholar
Cusa, Nicholas de, 1463. Dialogus de ludo globi.Google Scholar
Cusa, Nicholas de, see Kues, N. v.Google Scholar
Dijksterhuis, E. J., 1969. The Mechanization of the World Picture, London: Oxford University Press.Google Scholar
Donne, John, 1611. An Anatomy of the World, London.CrossRefGoogle Scholar
Drabkin, I. E., trans., see Galileo Galilei 1960.Google Scholar
Drake, S., 1960, trans., see Galileo Galilei [1613] 1957.Google Scholar
Drake, S., 1968. “Galileo Gleanings XVII: The Question of Circular Inertia,” Physis 10: 282–92.Google Scholar
Drake, S., 1970. Galileo Studies, Ann Arbor: The University of Michigan Press.Google Scholar
Drake, S., 1976. “A Further Appraisal of Impetus Theory: Buridan, Benedetti and Galileo,” Studies in History and Philosophy of Science 7 (4): 326–32.CrossRefGoogle Scholar
Drake, S. and Drabkin, I. E., eds., 1969. Mechanics in Sixteenth-Century Italy, Madison: The University of Wisconsin Press.Google Scholar
Duhem, P., 1909. “Un précurseur français de Copernic: Nicole Oresme (1377),” Revue générale des sciences pures et appliquées XX: 866–73.Google Scholar
Duhem, P., [1907] 1955. Études sur Léonard de Vinci, vol. 2, Paris: de Nobele.Google Scholar
Franklin, Allan, 1976. The Principle of Inertia in the Middle Ages, Colorado.CrossRefGoogle Scholar
Fredette, Raymond, 1972. “Galileo' De Motu Antiquiora,” Physis 14: 335–36.Google Scholar
Funkenstein, A., 1971. “Some Remarks on the Concept of Impetus and the Determination of Simple Motion,” Viator, 2: 329–48.CrossRefGoogle Scholar
Galileo, Galilei, [1613] 1957. Letters on Sunspots, in Discoveries and Opinions of Galileo, trans. Drake, S., New York: Doubleday.Google Scholar
Galileo, Galilei, 1960. On Motion, in On Motion and On Mechanics, trans. Drabkin, I. E. Madison: The University of Wisconsin Press.Google Scholar
Galileo, Galilei, 1968. Le opere di Galileo Galilei, Nuova ristampa della Edizione Nazionale. Firenze: Barbèra-Editore.Google Scholar
Galileo, Galilei, 1970. Dialogue Concerning the Two Chief World Systems, trans. Drake, S., Berkeley, California: University of California Press. (2nd rev. ed.)Google Scholar
Galileo, Galilei, [1891] 1982. Dialog über die beiden hauptsächlichsten Weltsysteme, Leipzig; reprinted by: Teubner.Google Scholar
Hanson, Norwood Russell, 1958. Patterns of Discovery, Cambridge: Cambridge University Press.Google Scholar
Hartshorne, C., ed., see Peirce, Ch. S.Google Scholar
Humboldt, A. V., 1847. Kosmos II, Stuttgart.Google Scholar
Jardine, Nicolas, 1982. “The Significance of the Copernican Orbs,” Journal for the History of Astronomy 13: 168–94.CrossRefGoogle Scholar
Kepler, J., 1596. Mysterium cosmographicum.Google Scholar
Koyré, Alexandre, 1973. The Astronomical Revolution. Copernicus, Kepler, Borelli, New York: Cornell University Press.Google Scholar
Krafft, F., 1976. “Kreis, Kugel,” in Historisches Wörterbuch der Philosophic, vol.IV, ed. Ritter, J. and Gründer, K., Darmstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
Kues, N. v. [1463] 1967. De ludo globi, in Philosophisch-TheologischeSchriften, ed. Gabriel, Leo, Vienna: Herder, vol. III, 221355.Google Scholar
Kuhn, T.S., 1976. The Copernican Revolution. Planetary Astronomy in the Development of Western Thought, Cambridge: Cambridge University Press.Google Scholar
Maier, A., 1968. Zwei Grundprobleme der scholastischen Naturphilosophie, Rome: Ed. di Storia e Letteratura.Google Scholar
Nunes, Pedro, 1566. Rules and Instruments for the Art of Navigation, Basel: Opera.Google Scholar
Oresme, N., 1968. Le Livre du ciel et du Monde, ed. Menut, Albert D. and Denomy, Alexander J., Madison: The University of Wisconsin Press.Google Scholar
Peirce, Ch. S., 1960. The Collected Papers of Charles Sanders Peirce, ed. Hartshorne, C., Cambridge, Mass.: The Belknap Press of Harvard University Press.Google Scholar
Pliny, , [1942] 1967. Natural History, vol. II, Cambridge, Mass.: Harvard University Press.Google Scholar
Stevin, S., 1608. Hypomnemata mathematica I, ed. Snell, W., Leiden.Google Scholar
Strauss, E., [1891], 1982. See Galileo Galilei, [1891] 1982.Google Scholar
Vailati, G., 1898. “Speculazioni di Giovanni Benedetti sul motu dei gravi,” Atti della R. accademia delle scienze di Torino, 33: 359383.Google Scholar
Vitelli, H., ed., 1887. Ioannis Philoponi in Aristotelis Physicorum libros octos (Commentaria in Aristotelem Graeca XVI), Berlin.Google Scholar
Wallace, William A., 1984. Galileo and His Sources. The Heritage of the Collegio Romano in Galileo' s Science, Princeton.CrossRefGoogle Scholar
Westman, R. S.., 1980. “The Astronomer' s Role in the Sixteenth Century: A Preliminary Study,” History of Science, 18: 105–47.CrossRefGoogle Scholar
Wisan, W. L., 1974. “The New Science of Motion: A Study of Galileo's De Motu Locali,” Archive for History of Exact Sciences 13: 103306.CrossRefGoogle Scholar
Wisan, W. L., 1984. “On the Chronology of Galileo's Writings,” Annali dell'istituto e Museo di Storia della Scienze die Firenze, 9 (Fasc. 2): 8588.Google Scholar
Wohlwill, E., 18831884. “Über die Entdeckung des Beharrungsgesetzes,” Zeitschrift für Völkerpsychologie und Sprachwissenschaft 14: 385; 15:72–82.Google Scholar
Wolff, Michael, 1980. Geschichte der Impetustheorie. Untersuchungen zum Ursprung der Klassischen Mechanik, Frankfurt am Main: Suhrkamp.Google Scholar
Wolff, Michael, 1987. “Philoponus and the Rise of Preclassical Dynamics,” in Philoponus and the Rejection of Aristotelian Science, ed. Sorabji, Richard, London: Duckworth.Google Scholar
Wolff, Michael, forthcoming. “Hipparchus and the Stoic Theory of Motion,” in The Bounds of Being, eds. Barnes, J. and Mignucci, M., Napoli: Bibliopolis, and Cambridge: Cambridge University Press.Google Scholar
Wolff, Michael, forthcoming. “Impetus,” Enzyklopädisches Wörterbuch des philosphischen Wissens, ed. Sandkühler, H. J., Köln: Pahl-Rugenstein.Google Scholar
Zilsel, E., 1940. “Copernicus and the Mechanics,” Journal of the History of Ideas 1: 1118.CrossRefGoogle Scholar