Published online by Cambridge University Press: 19 September 2008
Intact grains of barley (Hordeum distichum cv. Triumph) germinated rapidly in the dark or when exposed to brief daily light breaks in the temperature range 15–25°C, although germination proceeded less rapidly at low temperatures. Prolonged illumination (16 h/day) or continuous light inhibited germination of grains most effectively when conditions were less than optimal for germination, i.e. under low temperatures, restricted water, and low water potential induced by mannitol. Embryos isolated from grains responded in a similar way to light applied when the amount of water was restricted; water stress did not affect germination percentages in the dark or after one brief light break (3 min) but appreciably reduced the rate of germination. While light was only slightly inhibitory to embryos under optimal germination conditions, its inhibitory effect was intensified when other factors tending to delay germination were present. Water restriction also caused ABA contents in embryos to rise. Under conditions of water stress (water restriction or low osmotic potential), CaCl2 enhanced the inhibitory effect of light; however, addition of LaCl3 reversed this effect. The nature of light-induced inhibition of germination is discussed.
Present address: Department of Life Sciences, Ben-Gurion, University of the Negev, Beer Sheva, Israel.