Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T23:50:46.113Z Has data issue: false hasContentIssue false

Seed anatomy and dormancy class of 14 species from the Andean montane forests of Colombia

Published online by Cambridge University Press:  27 June 2023

Jose M. Rojas-Villa
Affiliation:
Group of Floristic Studies, Herbarium Universidad Católica de Oriente, Rionegro, Antioquia, Colombia Faculty of Agricultural Sciences, Universidad Católica de Oriente, Rionegro, Antioquia, Colombia
Mario A. Quijano-Abril*
Affiliation:
Group of Floristic Studies, Herbarium Universidad Católica de Oriente, Rionegro, Antioquia, Colombia
*
Corresponding author: Mario A. Quijano-Abril; Email: maquijano@uco.edu.co

Abstract

Seed dormancy is a key trait used around the world to help understand the ecological dynamics of plant species, however, in some ecosystems such as the Andean forests of Colombia, the identification of dormancy class remains poorly known. To address this, we described the morphology, anatomy and dormancy class of the seeds and fruits of 14 species using microtome sections, light microscopy and scanning electron microscopy. Five native pioneer species showed Morphophysiological Dormancy, three Physical Dormancy + Physiological Dormancy and two Physical Dormancy, whereas two invasive species showed Physiological Dormancy. Only the species of the genus Cecropia had seeds with PY + PD that was promoted by the anatomical structure of the achenes. Of the analysed species, 85% showed dormancy and followed a pattern like other tropical montane ecosystems in the world. The anatomy of achenes and development of seed dormancy play important roles in the capacity of Cecropia species to contribute to the natural regeneration of Andean ecosystems. Additionally, seed dormancy may promote the high invasiveness of Thunbergia alata and Ulex europaeus in the Andean forests of the Central Cordillera of Colombia.

Type
Research Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Athugala, YS, Gehan Jayasuriya, KMG, Gunaratne, AMTA and Baskin, CC (2021) Seed dormancy of 80 tropical montane forest species in Sri Lanka, the first dormancy profile for a tropical montane forest community. Plant Biology 23, 293299. doi:10.1111/plb.13203CrossRefGoogle ScholarPubMed
Barthlott, W (1981) Epidermal and seed surface characteristics of plants: systematic applicability and some evolutionary aspects. Nordic Journal of Botany 1, 345355. doi:10.1111/j.1756-1051.1981.tb00704.xCrossRefGoogle Scholar
Baskin, J and Baskin, C (2004) Germinating seeds of wildflowers, an ecological perspective. HortTechnology 14, 467473. doi:10.21273/horttech.14.4.0467CrossRefGoogle Scholar
Baskin, CC and Baskin, JM (2005) Seed dormancy in trees of climax tropical vegetation types. Tropical Ecology 46, 1728.Google Scholar
Baskin, CC and Baskin, JM (2007) A revision of Martin's seed classification system, with particular reference to his dwarf-seed type. Seed Science Research 17, 1120. doi:10.1017/S0960258507383189CrossRefGoogle Scholar
Baskin, CC and Baskin, JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination (2nd edn). San Diego, Academic Press. doi:10.1016/C2013-0-00597-X.Google Scholar
Carlquist, S (1982) The use of ethylenediamine in softening hard plant. Stain Technology 57, 311317.CrossRefGoogle ScholarPubMed
Carta, A, Bedini, G, Müller, JV and Probert, RJ (2013) Comparative seed dormancy and germination of eight annual species of ephemeral wetland vegetation in a Mediterranean climate. Plant Ecology 214, 339349. doi:10.1007/s11258-013-0174-1CrossRefGoogle Scholar
Carta, A, Probert, R, Puglia, G, Peruzzi, L and Bedini, G (2016) Local climate explains degree of seed dormancy in Hypericum elodes L. (Hypericaceae). Plant Biology 18, 7682. doi:10.1111/plb.12310CrossRefGoogle ScholarPubMed
Carvalho, N, Raizer, J and Fischer, E (2017) Passage through Artibeus lituratus (Olfers, 1818) increases germination of Cecropia pachystachya (Urticaceae) seeds. Tropical Conservation Science 10, 17. doi:10.1177/1940082917697262CrossRefGoogle Scholar
Chia, KA, Sadler, R, Turner, SR and Baskin, CC (2016) Identification of the seasonal conditions required for dormancy break of Persoonia longifolia (Proteaceae), a species with a woody indehiscent endocarp. Annals of Botany 118, 331346. doi:10.1093/aob/mcw100CrossRefGoogle ScholarPubMed
Corner, EJH (1976) The seeds of dicotyledons. New York, USA, Cambridge University Press.Google Scholar
Da Silva, EAA, De Melo, DLB, Davide, AC, De Bode, N, Abreu, GB, Faria, JMR and Hilhorst, HWM (2007) Germination ecophysiology of Annona crassiflora seeds. Annals of Botany 99, 823830. doi:10.1093/aob/mcm016CrossRefGoogle ScholarPubMed
de Souza, RP and Válio, IFM (2001) Seed size, seed germination, and seedling survival of Brazilian tropical tree species differing in successional status. Biotropica 33, 447457. doi:10.1111/J.1744-7429.2001.TB00198.XCrossRefGoogle Scholar
de Souza, TV, Torres, IC, Steiner, N and Paulilo, MTS (2015) Seed dormancy in tree species of the Tropical Brazilian Atlantic Forest and its relationships with seed traits and environmental conditions. Revista Brasileira de Botanica 38, 243264. doi:10.1007/s40415-014-0129-3Google Scholar
Donohue, K, Dorn, L, Griffith, C, Kim, E, Aguilera, A, Polisetty, CR and Schmitt, J (2005) Niche construction through germination cueing: life-history responses to timing of germination in Arabidopsis thaliana. Evolution 59, 771785. doi:10.1111/j.0014-3820.2005.tb01752.xGoogle ScholarPubMed
Escobar, DFE, Silveira, FAO and Morellato, LPC (2018) Timing of seed dispersal and seed dormancy in Brazilian savanna: two solutions to face seasonality. Annals of Botany 121, 11971209. doi:10.1093/aob/mcy006CrossRefGoogle ScholarPubMed
Fahn, A and Werker, E (1972) Anatomical mechanisms of seed dispersal, pp. 151221 in Kozlowski, T (Ed.), Seed biology. New York, USA, Academic Press. doi:10.1016/B978-0-12-424301-9.50010-3.CrossRefGoogle Scholar
Fehmi, JS, Rasmussen, C and Arnold, AE (2021) The pioneer effect advantage in plant invasions: site priming of native grasslands by invasive grasses. Ecosphere 12, 112. doi:10.1002/ecs2.3750CrossRefGoogle Scholar
Finch-Savage, WE and Leubner-Metzger, G (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523. doi:10.1111/j.1469-8137.2006.01787.xCrossRefGoogle ScholarPubMed
Font Quer, P (2001) Diccionario de botánica. (2nd edn). Barcelona, Ediciones Península.Google Scholar
Forbis, TA, Floyd, SK and De Queiroz, A (2002) The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution 56, 21122125. doi:10.1111/j.0014-3820.2002.tb00137.xGoogle ScholarPubMed
Franco-Rosselli, P and Berg, CC (1997) Distributional patterns of Cecropia (Cecropiaceae): a panbiogeographic analysis. Caldasia 19, 285296.Google Scholar
Gama-Arachchige, NS, Baskin, JM, Geneve, RL and Baskin, CC (2013) Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Annals of Botany 112, 6984. doi:10.1093/aob/mct094CrossRefGoogle ScholarPubMed
Geneve, RL, Baskin, CC, Baskin, JM, Gehan Jayasuriya, KMG and Gama-Arachchige, NS (2018) Functional morpho-anatomy of water-gap complexes in physically dormant seed. Seed Science Research 28, 186191. doi:10.1017/S0960258518000089CrossRefGoogle Scholar
Gentry, AH (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Annals – Missouri Botanical Garden 69, 557593. doi:10.2307/2399084CrossRefGoogle Scholar
Gioria, M, Petr, P, Baskin, C and Carta, A (2020) Phylogenetic relatedness mediates persistence and density of soil seed bank. Journal of Ecology 108, 21212131. doi:10.1111/1365-2745.13291CrossRefGoogle Scholar
Goebel, K (1898) Organography of plants: especially of the Archegoniata and Spermaphyta. Oxford, UK, Clarendon Press.Google Scholar
Gómez-Salazar, MC, Rodríguez-Montoya, SL, Quijano-Abril, MA and Tobón-Hincapié, MP (2016) Programa integral de conservación y recuperación para las especies Podocarpus oleifolius, Godoya antioquiensis y Cariniana pyriformis en áreas de bosque montano bajo y bosque húmedo tropical del Oriente Antioqueño, pp. 139151 in Quijano-Abril, MA (Ed.), Flora del Oriente Antioqueño: biodiversidad, ecología y estrategías de conservación. Bogotá, Gente Nueva.Google Scholar
Hammer, Ø, Harper, DAT and Ryan, PD (2001) Paleontological statistics software package for education and data analysis. Palaeontologia Electronia 4, 9.Google Scholar
Holdridge, LR (1967) Life zone ecology. doi:10.1046/j.1365-2699.1999.00329.x.CrossRefGoogle Scholar
Holthuijzen, AMA and Boerboom, JHA (1982) The Cecropia seedbank in the Surinam Lowland Rain Forest. Biotropica 14, 6268. doi:10.2307/2387761CrossRefGoogle Scholar
Janská, A, Pecková, E, Sczepaniak, B, Smýkal, P and Soukup, A (2019) The role of the testa during the establishment of physical dormancy in the pea seed. Annals of Botany 123, 815829. doi:10.1093/aob/mcy213CrossRefGoogle ScholarPubMed
Johansen, DA (1940) Plant microtechnique (1st edn). New York, USA, McGraw-Hill Book Company.Google Scholar
Kigel, J (1995) Seed development and germination (1st edn). Boca Raton, CRC Press.Google Scholar
Kildisheva, OA, Dixon, KW, Silveira, FAO, Chapman, T, Di Sacco, A, Mondoni, A, Turner, SR and Cross, AT (2020) Dormancy and germination: making every seed count in restoration. Restoration Ecology 28, S256S265. doi:10.1111/rec.13140CrossRefGoogle Scholar
Kollmann, J (2008) Spatial variation in seedling emergence and establishment - Functional groups among and within habitats?, pp. 274292 in Leck, MA; Parker, VT and Simpson, RL (Eds), Seedling ecology and evolution. New York, USA, Cambridge University Press. doi:10.1017/CBO9780511815133.015.CrossRefGoogle Scholar
Linkies, A, Graeber, K, Knight, C and Leubner-metzger, G (2010) The evolution of seeds. New Phytologist 186, 817831. doi:10.1111/j.1469-8137.2010.03249.xCrossRefGoogle ScholarPubMed
Lobova, TA, Mori, SA, Blanchard, F, Peckham, H and Charles-Dominique, P (2003) Cecropia as a food resource for bats in French Guiana and the significance of fruit structure in seed dispersal and longevity. American Journal of Botany 90, 388403. doi:10.3732/ajb.90.3.388CrossRefGoogle ScholarPubMed
Martin, A (1946) The comparative internal morphology of seeds. The University of Notre Dame 36, 513660. doi:10.2307/2421457Google Scholar
Moles, AT and Westoby, M (2006) Seed size and plant strategy across the whole life cycle. Oikos 113, 91105. doi:10.1111/j.0030-1299.2006.14194.xCrossRefGoogle Scholar
Murley, MR (1951) Seeds of the Cruciferae of Northeastern North America. The University of Notre Dame 46, 181.Google Scholar
Myers, N, Mittermeler, RA, Mittermeler, CG, Da Fonseca, GAB and Kent, J (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853858. doi:10.1038/35002501CrossRefGoogle ScholarPubMed
Niklas, KJ (2008) Embryo morphology and seedling evolution, pp. 103129 in Leck, MA; Parker, VT and Simpson, RL (Eds) Seedling ecology and evolution. New York, USA, Cambridge University Press. doi:10.1017/CBO9780511815133.007.CrossRefGoogle Scholar
Noguera-Urbano, EA (2016) Systematics and biodiversity areas of endemism: travelling through space and the unexplored dimension. Systematics and Biodiversity 14, 131139. doi:10.1080/14772000.2015.1135196CrossRefGoogle Scholar
Portilla-Yela, J (2019) The invasive species Ulex europaeus modifies its seeds morphology and germination pattern as it moves up along an elevation gradient. Available at: https://repositorio.uniandes.edu.co/handle/1992/45420.Google Scholar
Putri, WU, Qayim, I and Qadir, A (2021) Soil seed bank of an invasive species, Cecropia peltata L. in Kapur limestone hills. IOP Conference Series: Earth and Environmental Science 743, 16. doi:10.1088/1755-1315/743/1/012075Google Scholar
Quijano-Abril, MA, Castaño-López, MDLÁ, Marín-Henao, D, Sánchez-Gómez, D, Rojas-Villa, JM and Sierra-Escobar, J (2021) Functional traits of the invasive species Thunbergia alata (Acanthaceae) and its importance in the adaptation to Andean forests. Acta Botanica Mexicana 128, 123. doi:10.21829/abm128.2021.1870Google Scholar
Rangaswamy, N and Nandakumar, L (1985) Correlative studies on seed coat structure, chemical composition and impermeability in the legume Rhynchosia minima. Botanical Gazette 146, 501509. doi:10.1086/337555.CrossRefGoogle Scholar
Raven, PH (1976) Ethics and attitudes, pp. 155179 in Simmons, J; Beyer, R; Brandham, P; Lucas, G and Parry, VT (Eds), Conservation of threatened plants. Boston, MA, Springer. doi:10.1007/978-1-4684-2517-8_18.CrossRefGoogle Scholar
Rogers, HM and Hartemink, AE (2000) Soil seed bank and growth rates of an invasive species, Piper aduncum, in the lowlands of Papua New Guinea. Journal of Tropical Ecology 16, 243251. doi:10.1017/S0266467400001383CrossRefGoogle Scholar
Roth, I (1987) Stratification of a tropical forest as seen in dispersal types (1st edn). The Netherlands, Springer. doi:10.1007/978-94-009-4826-6.Google Scholar
Rubiano, K, Clerici, N, Norden, N and Etter, A (2017) Secondary forest and shrubland dynamics in a highly transformed landscape in the Northern Andes of Colombia (1985-2015). Forests 8, 216. doi:10.3390/F8060216CrossRefGoogle Scholar
Ruzin, S (1999) Plant microtechnique and microscopy. New York, USA, Oxford University Press.Google Scholar
Saatkamp, A, Cochrane, A, Commander, L, Guja, LK, Jimenez-Alfaro, B, Larson, J, Nicotra, A, Poschlod, P, Silveira, FAO, Cross, AT, Dalziell, EL, Dickie, J, Erickson, TE, Fidelis, A, Fuchs, A, Golos, PJ, Hope, M, Lewandrowski, W, Merritt, DJ, Miller, BP, Miller, RG, Offord, CA, Ooi, MKJ, Satyanti, A, Sommerville, KD, Tangney, R, Tomlinson, S, Turner, S and Walck, JL (2019) A research agenda for seed-trait functional ecology. New Phytologist 221, 17641775. doi:10.1111/nph.15502CrossRefGoogle ScholarPubMed
Sautu, AE (2004) Ecology, morphology, and germination physiology of tree seeds in a tropical semievergreen forest in the Panama canal watershed, with special reference to seed dormancy classes along a precipitation gradient. Available at: https://uknowledge.uky.edu/gradschool_theses/206.Google Scholar
Sautu, A, Baskin, JM, Baskin, CC and Condit, R (2006) Studies on the seed biology of 100 native species of trees in a seasonal moist tropical forest, Panama, Central America. Forest Ecology and Management 234, 245263. doi:10.1016/j.foreco.2006.07.006CrossRefGoogle Scholar
Sautu, A, Baskin, JM, Baskin, CC, Deago, J and Condit, R (2007) Classification and ecological relationships of seed dormancy in a seasonal moist tropical forest, Panama, Central America. Seed Science Research 17, 127140. doi:10.1017/s0960258507708127CrossRefGoogle Scholar
Schneider, CA, Rasband, WS and Eliceiri, KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671675. doi:10.1038/NMETH.2089CrossRefGoogle ScholarPubMed
Stearn, WT (1983) Botanical Latin: history, grammar, syntax, terminology and vocabulary. (3rd edn). North Pomfret, Vermont, USA, David and Charles Inc.Google Scholar
Swaine, MD and Whitmore, TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetation 75, 8186. doi:10.1007/BF00044629CrossRefGoogle Scholar
Talbot, MJ and White, RG (2013) Methanol fixation of plant tissue for scanning electron microscopy improves preservation of tissue morphology and dimensions. Plant Methods 9, 17. doi:10.1186/1746-4811-9-36CrossRefGoogle ScholarPubMed
Thompson, K, Band, SR and Hodgson, JG (1993) Seed size and shape predict persistence in soil. Functional Ecology 7, 236241. doi:10.2307/2389893CrossRefGoogle Scholar
Tolivia, D and Tolivia, J (1987) Fasga: A new polychromatic method for simultaneous and differential staining of plant tissues. Journal of Microscopy 148, 113117. doi:10.1111/j.1365-2818.1987.tb02859.xCrossRefGoogle Scholar
Treiber, EL, Gaglioti, AL, Romaniuc-Neto, S, Madriñán, S and Weiblen, GD (2016) Phylogeny of the Cecropieae (Urticaceae) and the evolution of an ant-plant mutualism. Systematic Botany 41, 5666. doi:10.1600/036364416X690633CrossRefGoogle Scholar
Udo, N, Tarayre, M and Atlan, A (2017) Evolution of germination strategy in the invasive species Ulex europaeus. Journal of Plant Ecology 10, 375385. doi:10.1093/jpe/rtw032Google Scholar
van der Hammen, T (1974) The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1, 326. doi:10.2307/3038066CrossRefGoogle Scholar
van der Hammen, T (2000) Aspectos de historia y ecología de la biodiversidad norandina y amazónica. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 24, 231245.Google Scholar
Vázquez-Yanes, C and Orozco-Segovia, A (1986) Dispersal of seeds by animals: effect on light controlled dormancy in Cecropia obtusifolia, pp. 7277 in Estrada, A and Fleming, T (Eds), Frugivores and seed dispersal. Dordrecht, Dr. W. Junk.Google Scholar
Vázquez-Yanes, C and Orozco-Segovia, A (1993) Patterns of seed longevity and germination in the tropical rainforest. Annual Review of Ecology and Systematics 24, 6987. doi:10.1146/annurev.es.24.110193.000441CrossRefGoogle Scholar
Veldman, JW, Greg Murray, K, Hull, AL, Mauricio Garcia-C, J, Mungall, WS, Rotman, GB, Plosz, MP and McNamara, LK (2007) Chemical defense and the persistence of pioneer plant seeds in the soil of a tropical cloud forest. Biotropica 39, 8793. doi:10.1111/j.1744-7429.2006.00232.xCrossRefGoogle Scholar
Wilkinson, HP (1979) The plant surface, pp. 97162 in Metcalfe, C and Chalk, L (Eds), Anatomy of the dicotyledons. New York, USA, Oxford University Press.Google Scholar
Willis, CG, Baskin, CC, Baskin, JM, Auld, JR, Venable, DL, Cavender-Bares, J, Donohue, K, de Casas, RR, Bradford, K, Burghardt, L, Kalisz, S, Meyer, S, Schmitt, J, Strauss, S and Wilczek, A (2014) The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytology 203, 300309. doi:10.1111/nph.12782CrossRefGoogle ScholarPubMed
Zalamea, PC, Dalling, JW, Sarmiento, C, Arnold, AE, Delevich, C, Berhow, MA, Ndobegang, A, Gripenberg, S and Davis, AS (2018) Dormancy-defense syndromes and tradeoffs between physical and chemical defenses in seeds of pioneer species. Ecology 99, 19881998. doi:10.1002/ecy.2419CrossRefGoogle ScholarPubMed