Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T13:09:48.394Z Has data issue: false hasContentIssue false

Thermal requirements and germination niche breadth of Polygonum ferrugineum Wedd. from southeastern Brazil

Published online by Cambridge University Press:  30 April 2021

Andréa R. Marques*
Affiliation:
Departamento de Ciências Biológicas, CEFET/MG, Av. Amazonas, 5253, Nova Suíça, 30480000, Belo Horizonte, Minas Gerais, Brazil
Ana Letícia B. R. Gonçalves
Affiliation:
Departamento de Ciências Biológicas, CEFET/MG, Av. Amazonas, 5253, Nova Suíça, 30480000, Belo Horizonte, Minas Gerais, Brazil
Fábio S. Santos
Affiliation:
Departamento de Ciências Biológicas, CEFET/MG, Av. Amazonas, 5253, Nova Suíça, 30480000, Belo Horizonte, Minas Gerais, Brazil
Diego Batlla
Affiliation:
IFEVA/Cátedra de Cerealicultura, CONICET/Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
Roberto Benech-Arnold
Affiliation:
IFEVA/Cátedra de Cerealicultura, CONICET/Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
Queila S. Garcia
Affiliation:
Departamento de Botânica, ICB/UFMG, Av. Antônio Carlos, 6627, Pampulha, 31270110, Belo Horizonte, Minas Gerais, Brazil
*
Author for Correspondence: Andréa R. Marques, E-mail: andrearmg@gmail.com

Abstract

Temperature may regulate seed dormancy and germination and determine the geographical distribution of species. The present study investigated the thermal limits for seed germination of Polygonum ferrugineum (Polygonaceae), an aquatic emergent herb distributed throughout tropical and subtropical America. Seed germination responses to light and temperature were evaluated both before (control) and after stratification at 10, 15 and 20°C for 7, 14 and 28 d. Germination of control seeds was ~50% at 10 and 15°C, and they did not germinate from 20 to 30°C. The best stratification treatment was 7 d at 10°C, where seed germination was >76% in the dark for all temperatures, except at 30°C, and < 60% in light conditions. A thermal time approach was applied to the seed germination results. Base temperature (Tb) was 6.3°C for non-dormant seeds and optimal temperature (To) was 20.6°C, ceiling temperature (Tc (<50)) was 32.8°C, and thermal time requirement for 50% germination was 44.4°Cd. We concluded that a fraction of P. ferrugineum seeds is dormant, has a narrow thermal niche to germinate (10 and 15°C) and that cold stratification (10°C) alleviated dormancy and amplified the thermal range permissive for germination of the species. Consequently, P. ferrugineum is expected to occur in colder environments, for example, at high altitudes. Higher temperatures decrease the probabilities of alleviate dormancy and the ability of their seeds to germinate.

Type
Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arana, MV, Gonzalez-Polo, M, Martinez-Meier, A, Gallo, LA, Benech-Arnold, RL, Sánchez, RA and Batlla, D (2016) Seed dormancy responses to temperature relate to Nothofagus species distribution and determine temporal patterns of germination across altitudes in Patagonia. New Phytologist 209, 507520. doi:10.1111/nph.13606.CrossRefGoogle ScholarPubMed
Aymard, GA and Howard, RA (2004) Polygonaceae, pp. 347370 in Steryermark, JA; Berry, PE; Yatskievych, K; Holst, BK (Eds.), Flora of the Venezuelan guayana. Saint Louis, Missouri Botanical Garden Press.Google Scholar
Baskin, JM and Baskin, CC (2004) A classification system for seed dormancy. Seed Science Research 14, 116. doi:10.1079/SSR2003150.CrossRefGoogle Scholar
Baskin, CC and Baskin, JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, Elsevier.Google Scholar
Batlla, D and Benech-Arnold, RL (2003) A quantitative analysis of dormancy loss dynamics in Polygonum aviculare L. seeds: development of a thermal time model based on changes in seed population thermal parameters. Seed Science Research 13, 5568. doi:10.1079/SSR2002124.CrossRefGoogle Scholar
Batlla, D and Benech-Arnold, RL (2005) Changes in the light sensitivity of buried Polygonum aviculare seeds in relation to cold-induced dormancy loss: development of a predictive model. New Phytologist 165, 445452. doi:10.1111/j.1469-8137.2004.01262.x.CrossRefGoogle ScholarPubMed
Batlla, D and Benech-Arnold, RL (2015) A framework for the interpretation of temperature effects on dormancy and germination in seed populations showing dormancy. Seed Science Research 25, 147158. doi:10.1017/S0960258514000452.CrossRefGoogle Scholar
Bewley, JD, Hilhorst, HWM, Bradford, KJ and Nonogaki, H (2013) Seeds: physiology of development, germination and dormancy. New York, Springer.CrossRefGoogle Scholar
Bouwmeester, HJ and Karssen, CM (1992) The seed bank in the soil, that great unknown in rare plant population studies. Bocconea 5, 5159. Available at: http://herbmedit.org/bocconea/5-159.pdf.Google Scholar
Cardoso, VJM and Pereira, FJM (2009) Dependência térmica da germinação de sementes de dymaria Cordata (L.) willd. ex roem. & schult. (Cariophyllaceae). Acta Botanica Brasilica 23, 305312. doi:10.1590/S0102-33062009000200002.CrossRefGoogle Scholar
Carta, A, Probert, R, Puglia, G, Peruzzi, L and Bedini, G (2016) Local climate explains degree of seed dormancy in Hypericum elodes L. (Hypericaceae). Plant Biology 18, 7682. doi:10.1111/plb.12310.CrossRefGoogle Scholar
Cialdella, AM and Brandbyge, J (2001) Polygonaceae, pp. 1106 in Spichiger, R; Ramella, L (Eds.), Flora del Paraguay. Saint Louis, Conservatoire et Jardin Botaniques de la ville de Genève & Missouri Botanical Garden.Google Scholar
Cochrane, A (2019) Multi-year sampling provides insight into the bet-hedging capacity of the soil-stored seed reserve of a threatened Acacia species from western Australia. Plant Ecology 220, 241253. doi:10.1007/s11258-019-00909-0.CrossRefGoogle Scholar
Costa, NV, Martins, D, Rodella, RA and Rodrigues-Costa, ACP (2011) Anatomical changes in Polygonum lapathifolium leaf blade submitted to herbicide application. Planta Daninha 29, 287294. doi:10.1590/S0100-83582011000200006.CrossRefGoogle Scholar
Covell, S, Ellis, RH, Roberts, EH and Summerfield, RJ (1986) The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean, and cowpea at constant temperatures. Journal of Experimental Botany 37, 705715. doi:10.1093/jxb/37.5.705.CrossRefGoogle Scholar
Daibes, LF and Cardoso, VJ (2018) Seed germination of a south American forest tree described by linear thermal time models. Journal of Thermal Biology 76, 156164. doi:10.1016/j.jtherbio.2018.07.019.CrossRefGoogle ScholarPubMed
Daws, MI, Lydall, E, Chmielarz, P, Leprince, O, Matthews, S, Thanos, CA and Pritchard, HW (2004) Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe. New Phytologist 162, 157166. doi:10.1111/j.1469-8137.2004.01012.x.CrossRefGoogle Scholar
Donohue, K, Casas, RR, Burghardt, L, Kovach, K and Willis, CG (2010) Germination, post germination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics 41, 293319. doi:10.1146/annurev-ecolsys-102209-144715.CrossRefGoogle Scholar
Duarte, DM and Garcia, QS (2015) Interactions between substrate temperature and humidity in signaling cyclical dormancy in seeds of two perennial tropical species. Seed Science Research 25, 170178. doi:10.1017/S0960258515000045.CrossRefGoogle Scholar
Ellis, RH, Hong, TD and Roberts, EH (1987) The development of desiccation-tolerance and maximum seed quality during seed maturation in six grain legumes. Annals of Botany 59, 2329. doi:10.1093/oxfordjournals.aob.a087280.CrossRefGoogle Scholar
Fernández Farnocchia, RB, Benech-Arnold, RL and Batlla, D (2019) Regulation of seed dormancy by the maternal environment is instrumental for maximizing plant fitness in Polygonum aviculare. Journal of Experimental Botany 70, 47934806. doi:10.1093/jxb/erz269.CrossRefGoogle ScholarPubMed
Finch-Savage, WE and Leubner-Metzger, GL (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523. doi:10.1111/j.1469-8137.2006.01787.x.CrossRefGoogle ScholarPubMed
Finney, DJ (1971) Probit analysis. Cambridge, Cambridge University Press.Google Scholar
García-Huidobro, J, Monteith, JL and Squire, GR (1982) Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.) in constant temperature. Journal of Experimental Botany 33, 288296. doi:10.1093/jxb/33.2.288.CrossRefGoogle Scholar
Graeber, KAI, Nakabayashi, K, Miatton, E, Leubner-Metzger, G and Soppe, WJ (2012) Molecular mechanisms of seed dormancy. Plant, Cell & Environment 35, 17691786. doi:10.1111/j.1365-3040.2012.02542.x.CrossRefGoogle ScholarPubMed
Hardegree, SP (2006) Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Annals of Botany 97, 11151125. doi:10.1093/aob/mcl071.CrossRefGoogle ScholarPubMed
Kagaya, M, Tani, T and Kachi, N (2011) Maternal and paternal effects on the germination time of non-dormant seeds of a monocarpic perennial species, Aster kantoensis (Compositae). Plant Species Biology 26, 6672. doi:10.1111/j.1442-1984.2010.00303.x.CrossRefGoogle Scholar
Marques, AR, Atman, AP, Silveira, FA and de Lemos-Filho, JP (2014) Are seed germination and ecological breadth associated? Testing the regeneration niche hypothesis with bromeliads in a heterogeneous neotropical montane vegetation. Plant Ecology 215, 517529. doi:10.1007/s11258-014-0320-4.CrossRefGoogle Scholar
Martins, FB, Gonzaga, G, Santos, DF and Reboita, MS (2018) Classificação climática de köppen e de thornthwaite para minas gerais: cenário atual e projeções futuras. Revista Brasileira de Climatologia 14, 129156. doi:10.5380/abclima.v1i0.60896.Google Scholar
Melo, E (2008) Flora da Serra do cipó, minas gerais: Polygonaceae. Boletim de Botânica da Universidade de São Paulo 26, 165174. doi:10.11606/issn.2316-9052.v26i2p165-174.CrossRefGoogle Scholar
Milberg, P, Andersson, L and Thompson, K (2000) Large seeded species are less dependent on light for germination than small-seeded ones. Seed Science Research 10, 99104. doi:10.1017/S0960258500000118.CrossRefGoogle Scholar
Müller, LLB, Albach, DC and Zotz, G (2017) “Are 3°C too much?”: thermal niche breadth in Bromeliaceae and global warming. Journal of Ecology 105, 507516. doi:10.1111/1365-2745.12681.CrossRefGoogle Scholar
Nishitani, S and Masuzawa, T (1996) Germination characteristics of two species of Polygonum in relation to their altitudinal distribution on Mt. Fuji, Japan. Arctic and Alpine Research 28, 104110. doi:10.2307/1552092.CrossRefGoogle Scholar
Oliveira, TGS and Garcia, QS (2019) Germination ecology of the perennial herb Xyris longiscapa: inter-annual variation in seed germination and seasonal dormancy cycles. Seed Science Research 29, 179183. doi:10.1017/S096025851900014X.CrossRefGoogle Scholar
Oliveira, TGS, Diamantino, IP and Garcia, QS (2017) Dormancy cycles in buried seeds of three perennial Xyris (Xyridaceae) species from the Brazilian campo rupestre. Plant Biology 19, 818823. doi:10.1111/plb.12597.CrossRefGoogle ScholarPubMed
Orrù, M, Mattana, E, Pritchard, HW and Bacchetta, G (2012) Thermal thresholds as predictors of seed dormancy release and germination timing: altitude-related risks from climate warming for the wild grapevine Vitis vinifera subsp. sylvestris. Annals of Botany 110, 16511660. doi:10.1093/aob/mcs218.CrossRefGoogle ScholarPubMed
Penfield, S and MacGregor, D (2017) Effects of environmental variation during seed production on seed dormancy and germination. Journal of Experimental Botany 68, 819825. doi:10.1093/jxb/erw436.Google ScholarPubMed
Picciau, R, Pritchard, HW, Mattana, E and Bacchetta, G (2019) Thermal thresholds for seed germination in Mediterranean species are higher in mountain compared with lowland areas. Seed Science Research 29, 4454. doi:10.1017/S0960258518000399.CrossRefGoogle Scholar
Piepho, H-P (2003) The folded exponential transformation for proportions. Journal of the Royal Statistical Society (Series D) 52, 575589. doi:10.1046/j.0039-0526.2003.00509.x.Google Scholar
Porceddu, M, Mattana, E, Pritchard, HW and Bacchetta, G (2013) Thermal niche for in situ seed germination by Mediterranean mountain streams: model prediction and validation for Rhamnus persicifolia seeds. Annals of Botany 112, 18871897. doi:10.1093/aob/mct238.CrossRefGoogle ScholarPubMed
Pott, VJ and Pott, A (2000) Plantas Aquáticas do Pantanal. Brasília, Embrapa.Google Scholar
Pritchard, HW and Manger, KR (1990) Quantal response of fruit and seed germination rate in Quercus robur L. and Catanea sativa Mill. to constant temperature and photon dose. Journal of Experimental Botany 41, 15491557. doi:10.1093/jxb/41.12.1549.CrossRefGoogle Scholar
Reynolds, DN (1984) Alpine annual plants: phenology, germination, photosynthesis, and growth of three rocky mountain species. Ecology 65, 759766. doi:10.2307/1938048.CrossRefGoogle Scholar
Seal, CE, Barwell, LJ, Flowers, TJ, Wade, EM and Pritchard, HW (2018) Seed germination niche of the halophyte Suaeda maritima to combined salinity and temperature is characterised by a halothermal time model. Environmental and Experimental Botany 155, 177184. doi:10.1016/j.envexpbot.2018.06.035.CrossRefGoogle Scholar
Sileshi, GW (2012) A critique of current trends in the statistical analysis of seed germination and viability data. Seed Science Research 22, 145159. doi:10.1017/S0960258512000025.CrossRefGoogle Scholar