Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T01:38:43.202Z Has data issue: false hasContentIssue false

Thermal time model of Solanum sarrachoides germination

Published online by Cambridge University Press:  16 September 2014

J.P. del Monte*
Affiliation:
Dpto. de Producción Vegetal: Botánica and
P.L. Aguado
Affiliation:
Dpto. de Producción Vegetal: Botánica and
A.M. Tarquis
Affiliation:
Dpto. De Matemática Applicada. E.T.S. de Ingenieros Agrónomos (UPM), Ciudad Universitaria s.n. 28040 Madrid, Spain C.E.I.G.R.A.M. (Centro de Estudios e Investigación de Gestión de Riesgos Agrícolas y Medioambientales) (UPM), Ciudad Universitaria s.n. 28040 Madrid, Spain
*
*Correspondence E-mail: jp.monte@upm.es

Abstract

A population-based modelling approach was used to predict the occurrence of germination in Solanum sarrachoides (SOLSA) for different treatments. Seeds collected in Toledo (Spain) were exposed to constant temperatures, to temperatures alternating between 10 and 30°C and to gibberellins (GAs; 0, 50, 100, 150 and 1000 ppm) during a 24-h imbibition period. The following parameters were measured: base temperature (Tb), mean thermal time (θT (50)) and the standard deviation of thermal time (σθT ). The SOLSA seeds only germinated at constant temperatures when the highest GA concentration was applied. The thermal model suggests that the induction and loss of physiological dormancy following seed dispersal is achieved when temperatures vary and when a mean thermal time of 66 growing degree-days (d°C) and a Tb value of 16°C are achieved when no GA treatment was added. The concentration of GA applied under conditions of alternating temperatures has an additive effect, reducing θT (50) up to threefold, from basal level (66 d°C) to 19.40 d°C, when the 1000 ppm GA treatment was applied. In this last case, the germination was accelerated by reducing Tb to 14°C. A 5–10°C change in temperature and a range of average temperatures of 20–27.5°C promoted the germination of SOLSA seeds to the greatest extent in the absence of GA. However, these conditions are not frequently encountered in the irrigated areas of the studied region; this finding could explain the limited ability of SOLSA to expand its range within this area.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P.S., Meyer, S.E. and Khan, M.A. (2000) Hydrothermal time as a tool in comparative germination study. pp. 401410 in Black, M.; Bradford, K.J.; Vazquez-Ramos, J. (Eds) Seed biology: Advances and applications. Oxon, CABI Publishing.Google Scholar
Alvarado, V. and Bradford, K.J. (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell & Environment 25, 10611069.CrossRefGoogle Scholar
Andreoli, C. and Khan, A. (1999) Matriconditioning integrated with gibberellic acid to hasten seed germination and improve stand establishment of pepper and tomato. Brasilia 34, 19531958.Google Scholar
Benech-Arnold, R.L. and Sánchez, R.A. (1995) Modeling weed seed germination. pp. 545566 in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.Google Scholar
Benech-Arnold, R.L., Sánchez, R.A., Forcella, F., Kruk, B.C. and Ghersa, C.M. (2000) Environmental control of dormancy in weed seed bank in soil. Field Crops Research 67, 105122.CrossRefGoogle Scholar
Bewley, J.D. and Black, M. (1994) Seed physiology and germination (2nd edition). New York, Plenum.CrossRefGoogle Scholar
Bouwmeester, H.J. and Karssen, C. (1992) The dual role of temperature in the regulation of the seasonal changes in dormancy and germination of seeds of Polygonum persicaria L. Oecologia 90, 8894.CrossRefGoogle ScholarPubMed
Bradford, K.J. (1990) A water relation analysis of seed germination rates. Plant Physiology 94, 840849.CrossRefGoogle ScholarPubMed
Bradford, K.J. (1995) Water relations in seed germination. pp. 351396 in Kigel, J.; Galili, G. (Eds) Seed development and germination. New York, Marcel Dekker.Google Scholar
Bradford, K.J. (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science 50, 248260.CrossRefGoogle Scholar
Bradford, K.J., Tarquis, A.M. and Durán, J.M. (1993) A population-based threshold model describing the relationship between germination rates and seed deterioration. Journal of Experimental Botany 44, 12251234.CrossRefGoogle Scholar
Brown, R.F. and Mayer, G.G. (1988) Representing cumulative germination. The use of the Weibull function and other empirically derived curves. Annals of Botany 61, 127138.CrossRefGoogle Scholar
Castro, M., Martín-Vide, J. and Alonso, S. (2005) Impactos del cambio climático en España. 1. El clima de España, pasado, presente y escenarios de clima para el Siglo XXI, Ed.MAGRAMA- Universidad de Castilla La Mancha, Madrid.Google Scholar
Chen, S.S.C. and Chang, J.L.L. (1972) Does gibberellic acid stimulate seed germination via amylase synthesis? Plant Physiology 49, 441442.CrossRefGoogle ScholarPubMed
Covell, S., Ellis, R.H., Roberts, E.H. and Summerfield, R.J. (1986) The influence of temperature on seed germination rate in grain legumes I: A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Experimental Botany 37, 705715.CrossRefGoogle Scholar
Dahal, P., Bradford, K.J. and Jones, R.A. (1990) Effects of priming and endosperm integrity on seed germination rates of tomato genotypes I: Germination at suboptimal temperature. Journal of Experimental Botany 41, 14311439.CrossRefGoogle Scholar
Del Monte, J.P. and Dorado, J. (2011) Effects of light conditions and after-ripening time on seed dormancy loss of Bromus diandrus Roth. Weed Research 51, 551590.CrossRefGoogle Scholar
Del Monte, J.P. and Tarquis, A.M. (1997) The role of temperature in the seed germination of two species of the Solanum nigrum complex. Journal of Experimental Botany 48, 20872093.CrossRefGoogle Scholar
Dorado, J., Fernández-Quintanilla, C. and Grundy, A.C. (2009) Germination patterns in naturally chilled and non-chilled seeds of fierce thornapple (Datura ferox) and velveleaf (Abutilon theophrasti). Weed Science 57, 155162.CrossRefGoogle Scholar
Edmonds, J. and Chweya, J.A. (1997) Black nightshades. Solanum nigrum L. and related species. Promoting the conservation and use of underutilized and neglected crops, 15. Rome, IPGRI.Google Scholar
Ellis, R.H. and Barrett, S. (1994) Alternating temperatures and rate of seed germination in lentil. Annals of Botany 74, 519524.CrossRefGoogle Scholar
Ellis, R.H., Covell, S., Roberts, E.H. and Summerfield, R.J. (1986) The influence of temperature on seed germination rate in grain legumes II: Intraspecific variation in chickpea Cicer arietinum L. at constant temperatures. Journal of Experimental Botany 37, 15031515.CrossRefGoogle Scholar
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.CrossRefGoogle ScholarPubMed
Finch-Savage, W.E., Steckel, J.R.A. and Phelps, K. (1998) Germination and post-germination growth to carrot seedling emergence: Predictive threshold models and sources of variation between sowing occasions. New Phytologist 139, 505516.CrossRefGoogle Scholar
Footitt, S., Doureterlo-Soler, I., Clay, H. and Finch-Savage, W.E. (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proceedings of the National Academy of Sciences, USA 108, 2021920224.CrossRefGoogle ScholarPubMed
Forcella, F. (1993) Seedling emergence model for velvetleaf. Agronomy Journal 85, 929933.CrossRefGoogle Scholar
Forcella, F., Benech-Arnold, R.L., Sanchez, R. and Ghersa, C.M. (2000) Modeling seedling emergence. Field Crops Research 67, 123139.CrossRefGoogle Scholar
Garcia-Huidobro, J., Monteith, J.L. and Squier, G.R. (1982) Time, temperature and germination of pearl millet Pennisetum typhoides, Sand H. Journal of Experimental Botany 33, 288296.CrossRefGoogle Scholar
Groot, S.P.C. and Karssen, C.M. (1992) Dormancy and germination of abscisic acid-deficient tomato seed. Studies with the sitiens mutant. Plant Physiology 99, 952958.CrossRefGoogle ScholarPubMed
Grundy, A.C., Phelps, K., Reader, R.J. and Burston, S. (2000) Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytologist 148, 433444.CrossRefGoogle ScholarPubMed
Gutterman, Y. (2000) Genotypic and phenotypic germination survival strategies of ecotypes and annual plant species in the Negev Desert of Israel. pp. 389399 in Black, M.; Bradford, K.J.; Vazquez-Ramos, J. (Eds) Seed biology: Advances and applications. Oxon, CABI Publishing.Google Scholar
Huarte, H.R. and Benech-Arnold, R.L. (2010) Hormonal nature of seed responses to fluctuating temperatures in Cynara cardunculus (L.). Seed Science Research 20, 3945.CrossRefGoogle Scholar
Huarte, H.R., Luna, V., Pagano, E.A., Zavala, J.A. and Benech-Arnold, R.L. (2014) Fluctuating temperatures terminate dormancy in Cynara cardunculus seeds by turning off ABA synthesis and reducing ABA signalling, but not stimulating GA synthesis or signalling. Seed Science Research 24, 7989.CrossRefGoogle Scholar
Jacobsen, S.E. and Olszewski, N.E. (1993) Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell 58, 887896.Google Scholar
Jusaitis, M., Polomka, L. and Sorensen, B. (2004) Habitat specificity, seed germination and experimental translocation of endangered herb Brachycome muelleri. Asteraceae . Biological Conservation 116, 251266.CrossRefGoogle Scholar
Karssen, C.M., Groot, S.P.C. and Koornneef, M. (1987) Hormone mutants and seed dormancy in Arabidopsis and tomato. pp. 119133 in Thomas, H.; Grierson, D. (Eds) Developmental mutants in higher plants. Cambridge, UK, Cambridge University Press.Google Scholar
Kebreab, E. and Murdoch, A.J. (1999a) A model of the effects of a wide range of constant and alternating temperatures on seed germination of four Orobanche species. Annals of Botany 84, 549557.CrossRefGoogle Scholar
Kebreab, E. and Murdoch, A.J. (1999b) Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. Journal Experimental Botany 50, 655664.CrossRefGoogle Scholar
Kebreab, E. and Murdoch, A.J. (2000) The effects of water stress on the temperature range for germination of Orobanche aegyptica seeds. Seed Science Research 10, 127133.CrossRefGoogle Scholar
Kucera, B., Cohn, M.A. and Leubner-Metzger, G. (2005) Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15, 281307.CrossRefGoogle Scholar
Laorga, S. (1983) Datos floristicos sobre la comarca de la Sagra Toledo, España III. Lazaroa 5, 321323.Google Scholar
Machado de Mello, A., Streck, N.A., Blankenship, E.E. and Paparozzi, E.T. (2009) Gibberellic acid promotes seed germination in Penstemon digitalis cv. Husker Red. HortScience 44, 870873.CrossRefGoogle Scholar
Meyer, S.E. and Pendleton, R.L. (2000) Genetic regulation of seed dormancy in Purshia tridentate Rosaceae . Annals of Botany 85, 521529.CrossRefGoogle Scholar
Murdoch, A.J., Roberts, E.H. and Goedert, C.O. (1989) Model for germination responses to alternating temperatures. Annals of Botany 63, 97111.CrossRefGoogle Scholar
Ni, B.R. and Bradford, K.J. (1993) Germination and dormancy of abscisic acid- and gibberellin-deficient mutant tomato Lycopersicon esculentum seeds. Plant Physiology 101, 607617.CrossRefGoogle ScholarPubMed
Pérez-Flores, L., Carrari, F., Osuna-Fernandez, R., Verónica Rodriguez, M., Enciso, S., Stanelloni, R., Sanchez, R.A., Bottini, R., Iusem, N.D. and Benech-Arnold, R.L. (2003) Expression analysis of a GA 20-oxidase in embryos from two sorghum lines with contrasting dormancy: possible participation of this gene in the hormonal control of germination. Journal of Experimental Botany 54, 20712079.CrossRefGoogle Scholar
Riley, J.M. (1987) Gibberellic acid for fruit set and seed germination. California Rare Fruit Growers Journal 19, 1012.Google Scholar
Roberts, H.A. and June, E. (1983) Field emergence and temperature requirements for germination in Solanum sarrachoides Sendt. Weed Research 23, 247252.CrossRefGoogle Scholar
Roman, E.S., Murphy, S.D. and Swanton, C.J. (2000) Simulation of Chenopodium album seedling emergence. Weed Science 48, 217224.CrossRefGoogle Scholar
Rosner, L.S., Harrington, J.T., Dreesen, D.R. and Murray, L. (2002) Effect of gibberellic acid and standard seed treatments on mountain snowberry germination. Native Plants Journal 3, 155162.Google Scholar
Rowse, H.R. and Finch-Savage, W.E. (2003) Hydrothermal threshold models can describe the germination response of carrot Daucus carota and onion Allium cepa seed populations across both sub- and supra-optimal temperature. New Phytologist 158, 101108.CrossRefGoogle Scholar
SIAR (2013) Servicio Integral de Asesoramiento al Regante de Castilla La Mancha. Available at: http://www.crea.uclm.es/siar/datmeteo/ (accessed accessed 3 January 2014).Google Scholar
Sobrino, E. and Del Monte, J.P. (1994) Two alien species new to the Spanish flora, and their characterization within the Solanum nigrum complex Solanaceae. Flora Mediterranea 4, 101109.Google Scholar
Steinmaus, S.J., Prather, T.S. and Holt, J.S. (2000) Estimation of base temperatures for nine weed species. Journal of Experimental Botany 51, 275286.CrossRefGoogle ScholarPubMed
Tompsett, P.B. and Pritchard, H.W. (1998) The effect of chilling and moisture status on the germination, desiccation, tolerance and longevity of Aesculus hippocastanum L. seed. Annals of Botany 82, 249261.CrossRefGoogle Scholar
Totterdell, S. and Roberts, E.H. (1980) Characteristics of alternating temperatures which stimulate loss of dormancy in seeds of Rumex obtusifolius L. and Rumex crispus L. Plant, Cell & Environment 3, 312.CrossRefGoogle Scholar
UNEP (United Nations Environment Programme) and WMO (World Meteorological Organization) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.M. (Eds). Cambridge, UK, Cambridge University Press.Google Scholar
Welbaum, G.E. and Bradford, K.J. (1991) Water relations of seed development and germination in muskmelon Cucumis mello L. VII: Influence of after-ripening and ageing on germination responses to temperature and water potential. Journal of Experimental Botany 42, 11371145.CrossRefGoogle Scholar