Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T05:28:44.921Z Has data issue: false hasContentIssue false

Water absorption and dormancy-breaking requirements of physically dormant seeds of Schizolobium parahyba (Fabaceae – Caesalpinioideae)

Published online by Cambridge University Press:  15 March 2012

Thaysi Ventura de Souza
Affiliation:
Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
Caroline Heinig Voltolini
Affiliation:
Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
Marisa Santos
Affiliation:
Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
Maria Terezinha Silveira Paulilo*
Affiliation:
Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
*
*Correspondence Email: paulilo@ccb.ufsc.br

Abstract

Physical dormancy refers to seeds that are water impermeable. Within the Fabaceae, the structure associated with the breaking of dormancy is usually the lens. This study verified the role of the lens in physical dormancy of seeds of Schizolobium parahyba, a gap species of Fabaceae from the Atlantic Forest of Brazil. The lens in S. parahyba seeds appeared as a subtle depression near the hilum and opposite the micropyle. After treatment of the seeds with hot water, the lens detached from the coat. Blocking water from contacting the lens inhibited water absorption in hot-water-treated seeds. High constant (30°C) and alternating (20/30°C) temperatures promoted the breaking of physical dormancy and germination in non-scarified seeds. Maximum percentage of germination occurred earlier for seeds incubated at 20/30°C than for those incubated at 30°C. Seeds with a blocked lens did not germinate at alternating or high temperatures. This study suggests that alternating temperatures are probably the cause of physical dormancy break of seeds of S. parahyba in gaps in the forest.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argel, P.J. and Paton, C.J. (1999) Overcoming legume hardheadedness. pp. 247265 in Loch, D.S.; Ferguson, J.E. (Eds) Forage seed production: tropical and sub-tropical species. Wallingford, CAB International.Google Scholar
Baskin, C.C. (2003) Breaking physical dormancy in seed – focusing on the lens. New Phytologist 158, 227238.CrossRefGoogle Scholar
Baskin, C.C. and Baskin, J.M. (2001) Seeds: Ecology, biogeography and evolution of dormancy and germination. London, Academic Press.Google Scholar
Baskin, J.M. and Baskin, C.C. (2000) Evolutionary consideration of claims of physical dormancy-break by microbial action and abrasion by soil particles. Seed Science Research 10, 409413.CrossRefGoogle Scholar
Baskin, J.M. and Baskin, C.C. (2004) A classification system for seed dormancy. Seed Science Research 14, 116.CrossRefGoogle Scholar
Baskin, J.M., Baskin, C.C. and Li, X. (2000) Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biology 15, 139152.CrossRefGoogle Scholar
Bewley, J.D. and Black, M. (1994) Seeds: Physiology of development and germination (2nd edition). New York, Plenum Press.CrossRefGoogle Scholar
Bhalla, P.L. and Slattery, H.D. (1984) Callose deposits make clover seeds impermeable to water. Annals of Botany 53, 125128.CrossRefGoogle Scholar
Bozzola, J.J. and Russell, L.D. (1991) Electron microscopy. Principles and techniques for biologists. Boston, Jones and Bartlett.Google Scholar
Burrows, G.E., Virgona, J.M. and Heady, R.D. (2009) Effect of boiling water, seed coat structure and provenance on the germination of Acacia melanoxylon seeds. Australian Journal of Botany 57, 139147.CrossRefGoogle Scholar
Cândido, J.F., Condé, A.R., Silva, R.F., Maria, J. and Ledo, A.A.M. (1981) Estudo da causa da dormência em sementes de guarapuvu (Schizolobium parahybum (Vell.) Blake) e métodos para sua quebra. Revista Árvore 5, 224232.Google Scholar
Carvalho, P.E.R. (2003) Espécies arbóreas brasileiras. Brasília, EMBRAPA.Google Scholar
Corner, E.J.H. (1951) The leguminous seed. Phytomorphology 1, 117150.Google Scholar
Costa, A.F. (1982) Farmacognosia. Lisboa, Fundação Calouste Gulbenkian.Google Scholar
Dell, B. (1980) Structure and function of the strophiolar plug in seeds of Albizia lophanta . American Journal of Botany 67, 556563.CrossRefGoogle Scholar
Fenner, M. and Thompson, K. (2005) The ecology of seeds. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.CrossRefGoogle ScholarPubMed
Freire, J.M., Coffler, R., Gonçalves, M.P.M., Santos, A.L.F. and Piña-Rodrigues, F.C.M. (2007) Germinação e dormência de sementes entre e dentro de populações de guapuruvu (Schizolobium parahyba (vell.) Blake) oriundas dos municípios de Paraty e Miguel Pereira-R.J. Revista Brasileira de Biociências 5, 168170.Google Scholar
Funes, G. and Venier, P. (2006) Dormancy and germination in three Acacia (Fabaceae) species from central Argentina. Seed Science Research 16, 7782.CrossRefGoogle Scholar
Gama-Arachchige, N.S., Baskin, J.M., Geneve, R.L. and Baskin, C.C. (2011) Acquisition of physical dormancy and ontogeny of the micropyle–water-gap complex in developing seeds of Geranium carolinianum (Geraniaceae). Annals of Botany 108, 5164.CrossRefGoogle ScholarPubMed
Gunn, C.R. (1984) Fruits and seeds of genera in subfamily Mimosoideae (Fabaceae). United States Department of Agriculture Technical Bulletin 1681, 1194.Google Scholar
Gunn, C.R. (1991) Fruits and seeds of genera in subfamily Caesalpinioideae (Fabaceae). United States Department of Agriculture Technical Bulletin 1755, 1408.Google Scholar
Hagon, M.W. (1971) The action of temperature fluctuations on hard seeds of subterranean clover. Australian Journal of Experimental Agriculture and Animal Husbandry 11, 440443.CrossRefGoogle Scholar
Hanna, P.J. (1984) Anatomical features of the seed coat of Acacia kempeana (Mueller) which relate to increased germination rate induced by heat treatment. New Phytologist 96, 2329.CrossRefGoogle Scholar
Harris, W.M. (1983) On the development of macrosclereids in seed coats of Pisum sativum L. American Journal of Botany 70, 15281535.CrossRefGoogle Scholar
Hyde, E.O.C. (1954) The function of the hilum in some Papilionaceae in relation to the ripening of the seed and the permeability of the coat. Annals of Botany 18, 241256.CrossRefGoogle Scholar
Hu, X.W., Wang, Y.R., Wu, Y.P., Nan, Z.B. and Baskin, C.C. (2008) Role of the lens in physical dormancy in seeds of Sophora alopecuroides L. (Fabaceae) from north-west China. Australian Journal of Agricultural Research 59, 491497.CrossRefGoogle Scholar
Hu, X.W., Wang, Y.R., Wu, Y.P. and Baskin, C.C. (2009) Role of the lens in controlling the water uptake in seeds of two Fabaceae (Papilionoideae) species treated with sulphuric acid and hot water. Seed Science Research 19, 7380.CrossRefGoogle Scholar
Jayasuriya, K.M., Baskin, J.M., Geneve, R.L., Baskin, C.C. and Chien, C.T. (2008) Physical dormancy in seeds of the holoparasitic angiosperm Cuscuta australis (Convolvulaceae, Cuscuteae): dormancy-breaking requirements, anatomy of the water gap and sensitivity cycling. Annals of Botany 102, 3948.CrossRefGoogle ScholarPubMed
Kelly, K.M., Van Staden, J. and Bell, W.E. (1992) Seed coat structure and dormancy. Plant Growth Regulation 11, 201209.CrossRefGoogle Scholar
Kondo, T. and Takahashi, K. (2004) Breaking of physical dormancy and germination ecology for seeds of Thermopsis lupinoides . Journal of the Japanese Society of Revegetation Technology 30, 163168.CrossRefGoogle Scholar
Leython, L. and Jáuregui, D. (2008) Morfología de la semilla y anatomía de la cubierta seminal de cinco especies de Calliandra (Leguminosae-Mimosoideae) de Venezuela. Revista Biologia Tropical 56, 10751086.Google Scholar
Ma, F., Cholewa, E., Mohamed, T., Peterson, C.A. and Jzen, M.G. (2004) Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Annals of Botany 94, 213228.CrossRefGoogle ScholarPubMed
Martens, H., Jakobsen, H.B. and Lyshede, O.B. (1995) Development of the strophiole in seeds of white clover (Trifolium repens L.). Seed Science Research 5, 171176.CrossRefGoogle Scholar
Matheus, M.T. and Lopes, J.C. (2007) Termoterapia em semente de Guarapuvú (Schizolobium parahyba (Vell.) Blake). Revista Brasileira de Biociências 5, 330332.Google Scholar
Moreno-Casasola, P., Grime, J.P. and Martinez, L. (1994) A comparative study of the effects of fluctuations in temperature and moisture supply on hard coat dormancy in seeds of coastal tropical legumes in Mexico. Journal of Tropical Ecology 10, 6786.Google Scholar
Morrison, D.A., McClay, K., Porter, C. and Rish, S. (1998) The role of the lens in controlling heat-induced breakdown of coat-imposed dormancy in native Australian legumes. Annals of Botany 82, 3540.CrossRefGoogle Scholar
O'Brien, T.P., Feder, N. and McCully, M.E. (1965) Polychromatic staining of plant cell walls by toluidine blue. Protoplasma 59, 368373.CrossRefGoogle Scholar
Quinlivan, B.J. (1966) The relationship between temperature fluctuations and softening of hard seeds of some legume species. Australian Journal Agricultural Research 17, 625631.CrossRefGoogle Scholar
Quinlivan, B.J. (1971) Seed coat impermeability in legumes. Journal of the Australian Institute of Agricultural Science 37, 283295.Google Scholar
Ruzin, S.E. (1951) Plant microtechniques and microscopy. New York, Oxford University Press.Google Scholar
Serrato-Valenti, G., Cornara, L., Ferrando, M. and Modenesi, P. (1993) Structural and histochemical features of Stylosanthes scabra (Leguminosae; Papilionoideae) seed coat as related to water entry. Canadian Journal of Botany 71, 834840.CrossRefGoogle Scholar
Serrato-Valenti, G., De Vries, M. and Cornara, L. (1995) The hilar region of Leucaena leucocephala Lam. (De Wit) seeds: structure, histochemistry and the role of the lens in germination. Annals of Botany 75, 569574.CrossRefGoogle Scholar
Smith, M.T., Wang, B.S.P. and Msanga, H.P. (2002) Dormancy and germination. pp. 149176 in Vozzo, J.A. (Ed.) Tropical tree seed manual. Agriculture Handbook 721. Washington DC, USDA Forest Service.Google Scholar
Souza, L.A. (1981) Estrutura do tegumento das sementes de Cassia cathartica Mart. (Leguminosae). Ciência e Cultura 34, 7174.Google Scholar
Statsoft (2001) Statistica (data analysis software system). Version 6. Available at http://www.Statsoft.com (accessed 31 January 2012).Google Scholar
Taylor, G.B. (1981) Effect of constant temperature treatments followed by alternating temperatures on the softening of hard seeds of Trifolium subterraneum L. Australian Journal of Plant Physiology 8, 547558.Google Scholar
Valtueña, F.J., Ortega-Olivencia, A. and Rodriguez-Riaño, T. (2008) Germination and seed bank biology in some Iberian populations of Anagyris foetida L. (Leguminosae). Plant Systematics and Evolution 275, 231243.CrossRefGoogle Scholar
Van Staden, J., Manning, J.C. and Kelly, K.M. (1989) Legumes seeds – the structure:function equation. pp. 417450 in Stirton, C.H.; Zarucchi, J.L. (Eds) Advances in legume biology, monographs on systematic botany. St. Louis, Missouri Botanical Garden.Google Scholar
Vazquez-Yanes, C. and Orozco-Segovia, A. (1982) Seed germination of a tropical rain forest pioneer tree (Heliocarpus donnel-smithii) in response to diurnal fluctuation of temperature. Physiologia Plantarum 56, 295298.CrossRefGoogle Scholar
Zeng, L., Cocks, P.S., Kailis, S.G. and Kuo, J. (2005) The role of fractures and lipids in the seeds coat in the loss of hardseededness of six Mediterranean legume species. Journal of Agricultural Science 143, 4355.CrossRefGoogle Scholar