Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T06:46:37.578Z Has data issue: false hasContentIssue false

Abscisic acid and the control of seed dormancy and germination

Published online by Cambridge University Press:  05 February 2010

Eiji Nambara*
Affiliation:
Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, OntarioM5S 2B2, Canada The Centre for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, Toronto, OntarioM5S 3B2, Canada RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi, Yokohama230-0045, Japan
Masanori Okamoto
Affiliation:
RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi, Yokohama230-0045, Japan
Kiyoshi Tatematsu
Affiliation:
RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi, Yokohama230-0045, Japan Laboratory of Plant Organ Development, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi444-8585, Japan
Ryoichi Yano
Affiliation:
RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi, Yokohama230-0045, Japan
Mitsunori Seo
Affiliation:
RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi, Yokohama230-0045, Japan
Yuji Kamiya
Affiliation:
RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi, Yokohama230-0045, Japan
*
*Correspondence Email: eiji.nambara@utoronto.ca

Abstract

Abscisic acid (ABA) is a plant hormone that regulates seed dormancy and germination. Seeds undergo changes in both ABA content and sensitivity during seed development and germination in response to internal and external cues. Recent advances in functional genomics have revealed the integral components involved in ABA metabolism (biosynthesis and catabolism) and perception, the core signalling pathway, as well as the factors that trigger ABA-mediated transcription. These allow for comparative studies to be conducted on seeds under different environmental conditions and from different genetic backgrounds. This review summarizes our understanding of the control of ABA content and the responsiveness of seeds to afterripening, light, high temperature and nitrate, with a focus on which tissues are involved in its metabolism and signalling. Also described are the regulators of ABA metabolism and signalling, which potentially act as the node for hormone crosstalk. Integration of such knowledge into the complex and diverse events occurring during seed germination will be the next challenge, which will allow for a clearer understanding of the role of ABA.

Type
Invited Review
Copyright
Copyright © Cambridge University Press 2010. This is a work of the U.S. Government and is not subject to copyright protection in the United States.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alboresi, A., Gestin, C., Leydecker, M.T., Bedu, M., Meyer, C. and Truong, H.-N. (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell and Environment 28, 500512.CrossRefGoogle ScholarPubMed
Ali-Rachedi, S., Bouinot, D., Wagner, M.H., Bonnet, M., Sotta, B., Grappin, P. and Jullien, M. (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219, 479488.CrossRefGoogle ScholarPubMed
Alonso-Blanco, C., Bentsink, L., Hanhart, C.J., Blankestijn-de Vries, H. and Koornneef, M. (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164, 711729.CrossRefGoogle ScholarPubMed
Argyris, J., Dahal, P., Hayashi, E., Still, D.W. and Bradford, K.J. (2008) Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiology 148, 926947.CrossRefGoogle ScholarPubMed
Bae, G. and Choi, G. (2008) Decoding of light signals by plant hormones and their interacting proteins. Annual Review of Plant Biology 59, 281311.CrossRefGoogle Scholar
Bailly, C. (2004) Active oxygen species and antioxidants in seed biology. Seed Science Research 14, 93107.CrossRefGoogle Scholar
Barrero, J.M., Talbot, M.J., White, R.G., Jacobsen, J.V. and Gubler, F. (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiology 150, 10061021.CrossRefGoogle ScholarPubMed
Baskin, C.C. and Baskin, J.M. (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. pp. 4985. San Diego, Academic Press.CrossRefGoogle Scholar
Baudo, M.M., Lyons, R., Powers, S., Pastori, G.M., Edwards, K.J., Holdsworth, M.J. and Shewry, P.R. (2006) Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding. Plant Biotechnology Journal 4, 369380.CrossRefGoogle ScholarPubMed
Benech-Arnold, R.L., Giallorenzi, M.C., Frank, J. and Rodriguez, V. (1999) Termination of hull-imposed dormancy in developing barley grains is correlated with changes in embryonic ABA levels and sensitivity. Seed Science Research 9, 3947.CrossRefGoogle Scholar
Benech-Arnold, R.L., Gualano, N., Leymarie, J., Côme, D. and Corbineau, F. (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. Journal of Experimental Botany 57, 14231430.CrossRefGoogle ScholarPubMed
Bentsink, L., Jowett, J., Hanhart, C.J. and Koornneef, M. (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences, USA 103, 1704217047.CrossRefGoogle ScholarPubMed
Bethke, P.C., Gubler, F., Jacobsen, J.V. and Jones, R.L. (2004) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219, 847855.CrossRefGoogle ScholarPubMed
Bethke, P.C., Libourel, I.G. and Jones, R.L. (2006) Nitric oxide reduces seed dormancy in Arabidopsis. Journal of Experimental Botany 57, 517526.CrossRefGoogle ScholarPubMed
Bethke, P.C., Libourel, I.G.L., Aoyama, N., Chung, Y.Y., Still, D.W. and Jones, R.L. (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiology 143, 11731188.CrossRefGoogle ScholarPubMed
Bewley, J.D. (1997) Seed germination and dormancy. Plant Cell 9, 10551066.CrossRefGoogle ScholarPubMed
Bewley, J.D. and Fountain, D.W. (1972) A distinction between the actions of abscisic acid, gibberellic acid and cytokinins in light-sensitive lettuce seed. Planta 102, 368371.CrossRefGoogle ScholarPubMed
Busch, W. and Lohmann, J.U. (2007) Profiling a plant: expression analysis in Arabidopsis. Current Opinion in Plant Biology 10, 136141.CrossRefGoogle ScholarPubMed
Cadman, C.S., Toorop, P.E., Hilhorst, H.W. and Finch-Savage, W.E. (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant Journal 46, 805822.CrossRefGoogle ScholarPubMed
Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou, F.L. and Holdsworth, M.J. (2008) Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant Journal 53, 214224.CrossRefGoogle ScholarPubMed
Chiwocha, S.D.S., Abrams, S.R., Ambrose, S.J., Cutler, A.J., Loewen, M., Ross, A.R.S. and Kermode, A.R. (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography–electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant Journal 35, 405417.CrossRefGoogle ScholarPubMed
Chiwocha, S.D.S., Cutler, A.J., Abrams, S.R., Ambrose, S.J., Yang, J., Ross, A.R.S. and Kermode, A.R. (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant Journal 42, 3548.CrossRefGoogle ScholarPubMed
Chono, M., Honda, I., Shinoda, S., Kushiro, T., Kamiya, Y., Nambara, E., Kawakami, N., Kaneko, S. and Watanabe, Y. (2006) Field studies in the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting. Journal of Experimental Botany 57, 24212434.CrossRefGoogle ScholarPubMed
Chopin, F., Orsel, M., Dorbe, M.F., Chardon, F., Truong, H.N., Miller, A.J., Krapp, A. and Daniel-Vedele, F. (2007) The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. Plant Cell 19, 15901602.CrossRefGoogle ScholarPubMed
Corbineau, F., Black, M. and Côme, D. (1993) Induction of thermodormancy in Avena sativa seeds. Seed Science Research 3, 111117.CrossRefGoogle Scholar
Curaba, J., Moritz, T., Blervaque, R., Parcy, F., Raz, V., Herzog, M. and Vachon, G. (2004) AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiology 136, 36603669.CrossRefGoogle ScholarPubMed
Debeaujon, I. and Koornneef, M. (2000) Gibberellin requirement for Arabidopsis seed germination is determined by both testa characteristics and embryonic abscisic acid. Plant Physiology 122, 415424.CrossRefGoogle ScholarPubMed
Debeaujon, I., Leon-Kloosterziel, K.M. and Koornneef, M. (2000) Influence of the testa on seed dormancy, germination and longevity in Arabidopsis. Plant Physiology 122, 403413.CrossRefGoogle ScholarPubMed
Derkx, M.P.M. and Karssen, C.M. (1993) Effects of light and temperature on seed dormancy and gibberellin-stimulated germination in Arabidopsis thaliana: studies with gibberellin-deficient and -insensitive mutants. Physiologia Plantarum 89, 360368.CrossRefGoogle Scholar
Endo, A., Sawada, Y., Takahashi, K., Okamoto, M., Ikegami, K., Koiwai, H., Seo, M., Toyomasu, T., Mitsuhashi, W., Shinozaki, K., Nakazono, M., Kamiya, Y., Koshiba, T. and Nambara, E. (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiology 147, 19841993.CrossRefGoogle ScholarPubMed
Feurtado, J.A. and Kermode, A.R. (2007) A merging of paths: abscisic acid and hormone cross-talk in the control of seed dormancy maintenance and alleviation. pp. 176211in Bradford, K.; Nonogaki, H. (Eds) Seed development, dormancy and germination. Annual Plant Reviews 27. Oxford, Blackwell Publishing.CrossRefGoogle Scholar
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.CrossRefGoogle ScholarPubMed
Finch-Savage, W.E., Cadman, C.S., Toorop, P.E., Lynn, J.R. and Hilhorst, H.W. (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant Journal 51, 6078.CrossRefGoogle ScholarPubMed
Finkelstein, R.R., Gampala, S.S.L. and Rock, C.D. (2002) ABA signaling in seeds and seedlings. Plant Cell 13, S15S45.CrossRefGoogle Scholar
Frey, A., Godin, B., Bonnet, M., Sotta, B. and Marion-Poll, A. (2004) Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta 218, 958964.CrossRefGoogle ScholarPubMed
Fujii, H. and Zhu, J.K. (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, USA 106, 83808385.CrossRefGoogle ScholarPubMed
Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.Y., Cutler, S.R., Sheen, J., Rodriguez, P.L. and Zhu, J.K. (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660664.CrossRefGoogle ScholarPubMed
Gabriele, S., Rizza, A., Martone, J., Circelli, P., Costantino, P. and Vittorioso, P. (2010) The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. Plant Journal 61, 312323.CrossRefGoogle ScholarPubMed
Gazzarrini, S., Tsuchiya, Y., Lumba, S., Okamoto, M. and McCourt, P. (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Developmental Cell 7, 373385.CrossRefGoogle ScholarPubMed
Gonai, T., Kawahara, S., Tougou, M., Satoh, S., Hashiba, T., Hirai, N., Kawaide, H., Kamiya, Y. and Yoshioka, T. (2004) Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin. Journal of Experimental Botany 55, 111118.CrossRefGoogle ScholarPubMed
Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A.R., Vartanian, N. and Giraudat, J. (1999) ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11, 18971909.CrossRefGoogle ScholarPubMed
Grappin, P., Bouinot, D., Sotta, B., Miginiac, E. and Jullien, M. (2000) Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210, 279285.CrossRefGoogle ScholarPubMed
Groot, S.P. and Karssen, C.M. (1992) Dormancy and germination of abscisic acid-deficient tomato seeds: studies with the sitiens mutant. Plant Physiology 99, 952958.CrossRefGoogle ScholarPubMed
Gubler, F., Hughes, T., Waterhouse, P. and Jacobsen, J. (2008) Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiology 147, 886896.CrossRefGoogle Scholar
Hilhorst, H.W.M. (1995) A critical update on seed dormancy. 1. Primary dormancy. Seed Science Research 5, 6173.CrossRefGoogle Scholar
Hilhorst, H.W.M. (2007) Definitions and hypotheses of seed dormancy. pp. 5071in Bradford, K.; Nonogaki, H. (Eds) Seed development, dormancy and germination. Annual Plant Reviews 27. Oxford, Blackwell Publishing.CrossRefGoogle Scholar
Hilhorst, H.W.M. and Karssen, C.M. (1988) Dual effect of light on the gibberellin- and nitrate-stimulated seed germination of Sisymbrium officinale and Arabidopsis thaliana. Plant Physiology 86, 591597.CrossRefGoogle ScholarPubMed
Hilhorst, H.W.M. and Karssen, C.M. (1989) Nitrate reductase independent stimulation of seed germination in Sisymbrium officinale L. (hedge mustard) by light and nitrate. Annals of Botany 63, 131137.CrossRefGoogle Scholar
Ho, C.H., Lin, S.H., Hu, H.C. and Tsay, Y.F. (2009) CHL1 functions as a nitrate sensor in plants. Cell 138, 11841194.CrossRefGoogle ScholarPubMed
Hobo, T., Kowyama, Y. and Hattori, T. (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proceedings of the National Academy of Sciences, USA 96, 1534815353.CrossRefGoogle ScholarPubMed
Hoecker, U., Vasil, I.K. and McCarty, D.R. (1995) Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. Genes & Development 9, 24592469.CrossRefGoogle ScholarPubMed
Holdsworth, M.J., Bentsink, L. and Soppe, W.J. (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179, 3354.CrossRefGoogle ScholarPubMed
Holman, T.J., Jones, P.D., Russell, L., Medhurst, A., Ubeda Tomás, S., Talloji, P., Marquez, J., Schmuths, H., Tung, S.A., Taylor, I., Footitt, S., Bachmair, A., Theodoulou, F.L. and Holdsworth, M.J. (2009) The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proceedings of the National Academy of Sciences, USA 106, 1361813623.CrossRefGoogle ScholarPubMed
Karssen, C.M. and Lacka, E. (1986) A revision of the hormone balance theory of seed dormancy: studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana. pp. 315323in Bopp, M. (Ed.) Plant growth substances. Berlin, Springer-Verlag.Google Scholar
Karssen, C.M., Brinkhorstvanderswan, D.L.C., Breekland, A.E. and Koornneef, M. (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157, 158165.CrossRefGoogle ScholarPubMed
Kermode, A.R. (2005) Role of abscisic acid in seed dormancy. Journal of Plant Growth Regulation 24, 319344.CrossRefGoogle Scholar
Khan, A.A. (1968) Inhibition of gibberellic acid-induced germination by abscisic acid and its reversal by cytokinins. Plant Physiology 43, 14631465.CrossRefGoogle ScholarPubMed
Kim, D.H., Yamaguchi, S., Lim, S., Oh, E., Park, J., Hanada, A., Kamiya, Y. and Choi, G. (2008) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20, 12601277.CrossRefGoogle ScholarPubMed
Ko, J.H., Yang, S.H. and Han, K.H. (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant Journal 47, 343355.CrossRefGoogle ScholarPubMed
Koornneef, M., Reuling, G. and Karssen, C.M. (1984) The isolation and characterization of abscisic acid insensitive mutants of Arabidopsis thaliana. Physiologia Plantarum 61, 377383.CrossRefGoogle Scholar
Koornneef, M., Hanhart, C.J., Hilhorst, H.W.M. and Karssen, C.M. (1989) In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiology 90, 463469.CrossRefGoogle ScholarPubMed
Koornneef, M., Bentsink, L. and Hilhorst, H. (2002) Seed dormancy and germination. Current Opinion in Plant Biology 5, 3336.CrossRefGoogle ScholarPubMed
Koornneef, M., Alonso-Blanco, C. and Vreugdenhil, D. (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annual Review of Plant Biology 55, 141172.CrossRefGoogle ScholarPubMed
Kucera, B., Cohn, M.A. and Leubner-Metzger, G. (2005) Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15, 281307.CrossRefGoogle Scholar
Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y. and Nambara, E. (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO Journal 23, 16471656.CrossRefGoogle Scholar
Lefebvre, V., North, H., Frey, A., Sotta, B., Seo, M., Okamoto, M., Nambara, E. and Marion-Poll, A. (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesised in the endosperm is involved in the induction of seed dormancy. Plant Journal 45, 309319.CrossRefGoogle ScholarPubMed
Le Page-Degivry, M.-T. and Garello, G. (1992) In situ abscisic acid synthesis. Plant Physiology 98, 13861390.CrossRefGoogle ScholarPubMed
Leymarie, J., Robayo-Romero, M.E., Gendreau, E., Benech-Arnold, R.L. and Corbineau, F. (2008) Involvement of ABA in induction of secondary dormancy in barley (Hordeum vulgare L.) seeds. Plant Cell Physiology 49, 18301838.CrossRefGoogle ScholarPubMed
Liu, Y., Shi, L., Ye, N., Liu, R., Jia, W. and Zhang, J. (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytologist 183, 10301042.CrossRefGoogle ScholarPubMed
Lopez-Molina, L., Mongrand, S. and Chua, N.H. (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proceedings of the National Academy of Sciences, USA 98, 47824787.CrossRefGoogle ScholarPubMed
Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. and Grill, E. (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 10641068.CrossRefGoogle ScholarPubMed
Marin, E., Nussaume, L., Quesada, A., Gonneau, M., Sotta, B., Hugueney, P., Frey, A. and Marion-Poll, A. (1996) Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO Journal 15, 23312342.CrossRefGoogle Scholar
Matakiadis, T., Alboresi, A., Jikumaru, Y., Tatematsu, K., Pichon, O., Renou, J.-P., Sotta, B., Kamiya, Y., Nambara, E. and Troung, H.-N. (2009) The Arabidopsis abscisic acid catabolism gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiology 149, 949960.CrossRefGoogle Scholar
McCarty, D.R. (1995) Genetic control and integration of maturation and germination pathways in seed development. Annual Review of Plant Physiology and Plant Molecular Biology 46, 7193.CrossRefGoogle Scholar
McCourt, P. and Creelman, R. (2008) The ABA receptors – we report you decide. Current Opinion in Plant Biology 11, 474478.CrossRefGoogle ScholarPubMed
Millar, A.A., Jacobsen, J.V., Ross, J.J., Helliwell, C.A., Poole, A.T., Scofield, G., Reid, J.B. and Gubler, F. (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant Journal 45, 942954.CrossRefGoogle ScholarPubMed
Müller, K., Tintelnot, S. and Leubner-Metzger, G. (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiology 47, 864877.CrossRefGoogle ScholarPubMed
Müller, K., Carstens, A.C., Linkies, A., Torres, M.A. and Leubner-Metzger, G. (2009) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytologist 184, 885897.CrossRefGoogle Scholar
Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y. and Nambara, E. (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant Journal 41, 697709.CrossRefGoogle ScholarPubMed
Nakaminami, K., Sawada, Y., Suzuki, M., Kenmoku, H., Kawaide, H., Mitsuhashi, W., Sassa, T., Inoue, Y., Kamiya, Y. and Toyomasu, T. (2003) Deactivation of gibberellin by 2-oxidation during germination of photoblastic lettuce seeds. Bioscience, Biotechnology, and Biochemistry 67, 15511558.CrossRefGoogle ScholarPubMed
Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., Kobayashi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiology 50, 13451363.CrossRefGoogle Scholar
Nambara, E. and Marion-Poll, A. (2005) Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56, 165185.CrossRefGoogle ScholarPubMed
Nambara, E., Hayama, R., Tsuchiya, Y., Nishimura, M., Kawaide, H., Kamiya, Y. and Naito, S. (2000) The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. Developmental Biology 220, 412423.CrossRefGoogle ScholarPubMed
Niu, X., Helentjaris, T. and Bate, N.J. (2002) Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 14, 25652575.CrossRefGoogle ScholarPubMed
Oh, E., Kim, J., Park, E., Kim, J.I., Kang, C. and Choi, G. (2004) PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 16, 30453058.CrossRefGoogle ScholarPubMed
Oh, E., Yamaguchi, S., Hu, J.H., Yusuke, J., Jung, B., Paik, I., Lee, H.S., Sun, T.-p., Kamiya, Y. and Choi, G. (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19, 11921208.CrossRefGoogle Scholar
Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., Kamiya, Y., Koshiba, T. and Nambara, E. (2006) CYP707A1 and CYP707A2, which encode ABA 8′-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiology 141, 97107.CrossRefGoogle Scholar
Okamoto, M., Tanaka, Y., Abrams, S.R., Kamiya, Y., Seki, M. and Nambara, E. (2009) High humidity induces ABA 8′-hydroxylase in stomata and vasculature to regulate local and systemic ABA responses in Arabidopsis. Plant Physiology 149, 825834.CrossRefGoogle ScholarPubMed
Okamoto, M., Tatematsu, K., Matsui, A., Morosawa, T., Ishida, J., Tanaka, M., Endo, T., Mochizuki, Y., Toyoda, T., Kamiya, Y., Shinozaki, K., Nambara, E. and Seki, M. (2010) Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant Journal (in press).CrossRefGoogle ScholarPubMed
Oracz, K., El-Maarouf Bouteau, H., Farrant, J.M., Cooper, K., Belghazi, M., Job, C., Job, D., Corbineau, F. and Bailly, C. (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant Journal 50, 452465.CrossRefGoogle ScholarPubMed
Oracz, K., El-Maarouf Bouteau, H., Bogatek, R., Corbineau, F. and Bailly, C. (2008) Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signaling pathway. Journal of Experimental Botany 59, 22412251.CrossRefGoogle Scholar
Pandey, S., Nelson, D.C. and Assmann, S.M. (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136, 136148.CrossRefGoogle ScholarPubMed
Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P., Zhu, J.K., Schroeder, J.I., Volkman, B.F. and Cutler, S.R. (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 10681071.CrossRefGoogle ScholarPubMed
Penfield, S. and Hall, A. (2009) A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 21, 17221732.CrossRefGoogle ScholarPubMed
Penfield, S., Li, Y., Gilday, A.D., Graham, S. and Graham, I.A. (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18, 18871899.CrossRefGoogle ScholarPubMed
Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y. and Lopez-Molina, L. (2008) The GA-signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating ABA synthesis and ABI5 activity. Plant Cell 20, 27292745.CrossRefGoogle Scholar
Preston, J., Tatematsu, K., Kanno, Y., Hobo, T., Kimura, M., Jikumaru, Y., Yano, R., Kamiya, Y. and Nambara, E. (2009) Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiology 50, 17861800.CrossRefGoogle Scholar
Qin, X.Q. and Zeevaart, J.A.D. (2002) Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiology 128, 544551.CrossRefGoogle ScholarPubMed
Raz, V., Bergervoet, J.H.W. and Koornneef, M. (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128, 243252.CrossRefGoogle ScholarPubMed
Saito, S., Hirai, N., Matsumoto, C., Ohigashi, H., Ohta, D., Sakata, K. and Mizutani, M. (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylases, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiology 134, 14391449.CrossRefGoogle Scholar
Sankhla, N. and Sankhla, D. (1968) Reversal of ( ± )-abscisin II-induced inhibition of lettuce seed germination. Physiologia Plantarum 21, 190195.CrossRefGoogle Scholar
Sawada, Y., Aoki, M., Nakaminami, K., Mitsuhashi, W., Tatematsu, K., Kushiro, T., Koshiba, T., Kamiya, Y., Inoue, Y., Nambara, E. and Toyomasu, T. (2008) Phytochrome and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic lettuce seeds. Plant Physiology 146, 13861396.CrossRefGoogle ScholarPubMed
Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A.D. and McCarty, D.R. (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276, 18721874.CrossRefGoogle ScholarPubMed
Seo, M., Hanada, A., Kuwahara, A., Endo, A., Okamoto, M., Yamauchi, Y., North, H., Marion-Poll, A., Sun, T.-p., Koshiba, T., Kamiya, Y., Yamaguchi, S. and Nambaran, E. (2006) Regulation of hormone metabolism in Arabidopsis seeds: phytochrome-regulation of abscisic acid metabolism and abscisic acid-regulation of gibberellin metabolism. Plant Journal 48, 354366.CrossRefGoogle ScholarPubMed
Seo, M., Nambara, E., Choi, G. and Yamaguchi, S. (2009) Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology 69, 463472.CrossRefGoogle ScholarPubMed
Sharma, N., Anderson, M., Kumar, A., Zhang, Y., Giblin, E.M., Abrams, S.R., Zaharia, L.I., Taylor, D.C. and Fobert, P.R. (2008) Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC Genomics 29, 619.CrossRefGoogle Scholar
Suzuki, M., Kao, C.Y. and McCarty, D.R. (1997) The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9, 799807.Google Scholar
Suzuki, M., Ketterling, M.G., Li, Q.B. and McCarty, D.R. (2003) Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiology 132, 16641677.CrossRefGoogle ScholarPubMed
Tamura, N., Yoshida, T., Tanaka, A., Sasaki, R., Bando, A., Toh, S., Lepiniec, L. and Kawakami, N. (2006) Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana. Plant Cell Physiology 47, 10811094.CrossRefGoogle ScholarPubMed
Teng, S., Rognoni, S., Bentsink, L. and Smeekens, S. (2008) The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signalling pathway, and enhances sugar sensitivity by stimulating ABI4 expression. Plant Journal 55, 372381.CrossRefGoogle ScholarPubMed
Thompson, A.J., Jackson, A.C., Symonds, R.C., Mulholland, B.J., Dadswell, A.R., Blake, P.S., Burbidge, A. and Taylor, I.B. (2000) Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. Plant Journal 23, 363374.CrossRefGoogle ScholarPubMed
Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y., Hanada, A., Aso, Y., Ishiyama, K., Tamura, N., Iuchi, S., Kobayashi, M., Yamaguchi, S., Kamiya, Y., Nambara, E. and Kawakami, N. (2008) High temperature-induced ABA biosynthesis and its role in the inhibition of GA action in Arabidopsis seeds. Plant Physiology 146, 13681385.CrossRefGoogle ScholarPubMed
Toorop, P.E., Bewley, J.D. and Hilhorst, H.W.M. (1996) Endo-b-isoforms are present in the endosperm and embryo of tomato seeds, but are not essentially linked to germination. Planta 200, 153158.CrossRefGoogle Scholar
Toyomasu, T., Tsuji, H., Yamane, H., Nakayama, M., Yamaguchi, I., Murohushi, N., Takahashi, N. and Inoue, Y. (1993) Light effects on endogenous levels of gibberellins in photoblastic lettuce seeds. Journal of Plant Growth Regulation 12, 8590.CrossRefGoogle Scholar
Toyomasu, T., Yamane, H., Murohushi, N. and Inoue, Y. (1994) Effects of exogenously applied gibberellin and red light on the endogenous levels of abscisic acid in photoblastic lettuce seeds. Plant Cell Physiology 35, 127129.Google Scholar
Toyomasu, T., Kawaide, H., Mitsuhashi, W., Inoue, Y. and Kamiya, Y. (1998) Phytochrome regulation of gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiology 118, 15171523.CrossRefGoogle ScholarPubMed
Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., Ishihama, Y., Hirayama, T. and Shinozaki, K. (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences, USA 106, 1758817593.CrossRefGoogle ScholarPubMed
Yamagishi, K., Tatematsu, K., Yano, R., Preston, J., Kitamura, S., Takahashi, H., McCourt, P., Kamiya, Y. and Nambara, E. (2009) CHOTTO1, a double AP2 domain protein of Arabidopsis thaliana, regulates germination and seedling growth under excess supply of glucose and nitrate. Plant Cell Physiology 50, 330340.CrossRefGoogle ScholarPubMed
Yamaguchi, S. (2008) Gibberellin metabolism and its regulation. Annual Review of Plant Biology 59, 225251.CrossRefGoogle ScholarPubMed
Yamaguchi, S., Smith, M.W., Brown, R.G., Kamiya, Y. and Sun, T.-p. (1998) Phytochrome regulation and differential expression of gibberellin 3β-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10, 21152126.Google ScholarPubMed
Yano, R., Kanno, Y., Jikumaru, Y., Nakabayashi, K., Kamiya, Y. and Nambara, E. (2009) CHO1, a putative double APETALA2 repeat transcription factor, is involved in ABA-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. Plant Physiology 151, 641654.CrossRefGoogle Scholar
Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., Shinozaki, K. and Hirayama, T. (2006) ABA-Hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiology 140, 115126.CrossRefGoogle ScholarPubMed
Yoshioka, T., Endo, T. and Satoh, S. (1998) Restoration of seed germination at supraoptimal temperatures by fluridone, an inhibitor of abscisic acid biosynthesis. Plant Cell Physiology 39, 307312.CrossRefGoogle Scholar
Zentella, R., Zhang, Z.-L., Park, M., Thomas, S.G., Endo, A., Murase, K., Fleet, C.M., Jikumaru, Y., Nambara, E., Kamiya, Y. and Sun, T.-p. (2007) Global analysis of DELLA direct targets in early gibberellin signaling. Plant Cell 19, 30373057.CrossRefGoogle ScholarPubMed