Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T22:46:25.853Z Has data issue: false hasContentIssue false

A comparison of the synthesis of DNA, RNA and proteins in the embryos of after-ripened and thermo- or FR-dormant Agrostemma githago L. seeds

Published online by Cambridge University Press:  19 September 2008

U. Gerth
Affiliation:
Botanisches Institut der Ernst-Moritz-Arndt-Universität, Grimmer Strasse 88, 17487 Greifswald, Germany
D. Bernhardt*
Affiliation:
Botanisches Institut der Ernst-Moritz-Arndt-Universität, Grimmer Strasse 88, 17487 Greifswald, Germany
*
*Correspondence

Abstract

Imbibed embryos of after-ripened and secondarily thermo- and FR-dormant Agrostemma githago seeds were investigated as to their ability to synthesize DNA, RNA and proteins with the aim of finding characteristic differences connected with the induction and maintenance of developmental arrest. A gradual decrease in DNA synthesis was observed during the induction of thermodormancy. However, DNA synthesis was stimulated up to that of embryos of 30–h-imbibed after-ripened seeds within 24 h approximately after transferring the thermodormant seeds into temperatures which normally allow germination. DNA synthesis of embryos of FR-dormant seeds remained constant at a relatively low level during 7 d FR and another 7 d dark incubation. RNA synthesis decreased to different extents during induction of thermo- and FR-dormancy when it was arrested at a relatively low level in seeds transferred to temperatures which normally allow germination. Processes leading to an increase in RNA synthesis such as in embryos of after-ripened seeds appeared to be quantitatively and/or qualitatively repressed. Interestingly, protein synthesis was extremely depressed during induction of thermodormancy whereas it was slightly stimulated during induction of FR-dormancy. Nevertheless two-dimensional protein PAGE revealed several polypeptides which were new, increased, decreased or not synthesized predominantly in axes of thermo- and FR-dormant seeds in comparison to germinating after-ripened seeds. It is suggested that a connection exists between these polypeptides and the repression of germination. After transferring seconarily dormant seeds to temperatures which normally allow germination, a temporary stimulation of protein synthesis could be observed in both cases.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baiza, A.M., Vazquez-Ramos, J.M. and Sanchez de Jimenez, E. (1989) DNA synthesis and cell division in embryonic maize tissues during germination. Journal of Plant Physiology 135, 416421.CrossRefGoogle Scholar
Bernhardt, D., Hecker, M. and Bernhardt, H. (1978) Eignung intakter Caryophyllaceen-Samen für durch Einbauversuche. Biochemie und Physiologie der Pflanzen 172, 263270.CrossRefGoogle Scholar
Bernhardt, D., Kopke, T. and Voigt, B. (1993) Differences in patterns of newly synthesized proteins in imbibing embryos of after-ripened and aged seeds of Agrostemma githago and comparison of protein synthesis in vivo and in vitro. Journal of Experimental Botany 44, 415418.CrossRefGoogle Scholar
Bewley, J.D. and Black, M. (1982) Physiology and biochemistry of seeds in relation to germination. 2. Viability, dormancy and environmental control. Berlin, Heidelberg, New York, Springer-Verlag.CrossRefGoogle Scholar
Bonner, W.E. and Laskey, R.A. (1974) A film detection method for tritium labelled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 46, 8388.CrossRefGoogle ScholarPubMed
Borriss, H. (1956) Über einige Ergebnisse und Probleme der Keimungsphysiologie. Wissenschaftliche Zeitschrift der Ernst-Moritz-Arndt-Univsität Greifswald, Mathematisch-Naturwissenschaftliche Reihe 6, 251265.Google Scholar
De Klerk, G.J. (1983) Protein synthesis in ripening, dormant and after-ripened Agrostemma githago L. seeds. Dissertation Catholic University of Nijmegen, Netherlands.Google Scholar
Dommes, J. and Van de Walle, C. (1990) Polysome formation and incorporation of new ribosomes into polysomes during germination of the embryonic axis of maize. Physiologia Plantarum 79, 289296.CrossRefGoogle Scholar
Dyer, W.E. (1993) Dormancy-associated embryonic mRNAs and proteins in imbibing Avena fatua caryopses. Physiologia Plantarum 88, 201211.CrossRefGoogle Scholar
Elder, R.H. and Osborne, D.J. (1993) Function of DNA synthesis and DNA repair in the survival of embryos during early germination and in dormancy. Seed Science Research 3, 4353.CrossRefGoogle Scholar
Esen, A. (1978) A simple method for quantitative, semiquantitative, and qualitative assay of protein. Analytical biochemistry 89, 264273.CrossRefGoogle ScholarPubMed
Hance, B.A. and Bevington, J.M. (1992) Changes in protein synthesis during stratification and dormancy release in embryos of sugar maple (Acer saccharum). Physiologia Plantarum 86, 365371.CrossRefGoogle Scholar
Hecker, M. (1975) Der Einfluss von Licht verschiedener Wellenlängen auf die DNA-, RNA- und Proteinbiosynthesen in blockierten und aktivierten Embryonen von Agrostemma githago. Biologische Rundschau 13, 232234.Google Scholar
Hecker, M. (1976) Untersuchungen über DNA-, RNA-und Proteinbiosynthesen in blockierten und aktivierten pflanzlichen Embryonen. Habilitationsschrift, University of Greifswald, Germany.Google Scholar
Hecker, M. (1977) Untersuchungen über RNA-und Proteinbiosynthesen in aktivierten und temperaturblockierten Agrostemma githago-Samen: Einfluss von Benzylaminopurin. Biologia Plantarum 19, 29.CrossRefGoogle Scholar
Hecker, M., Köhler, K.H. and Bernhardt, D. (1982) Aktivierung von Nukleinsäuren- und Proteinbiosynthesen in auswachsenden Sporen von Mikroorganismen sowie quellenden pflanzlichen Samen. Biologisches Zentralblatt 101, 261270.Google Scholar
Huang, B.F., Rodaway, S.J., Wood, A. and Marcus, A. (1980) RNA synthesis in germinating embryonic axes of soybean and wheat. Plant Physiology 65, 11551159.CrossRefGoogle ScholarPubMed
Karssen, C.M. (1980/1981) Environmental conditions and endogenous mechanisms involved in secondary dormancy of seeds. Israel Journal of botany 29, 4564.Google Scholar
Köhler, K.H. (1973) Die Steuerung der Amaranthinbiosynthese durch das Phytochromsystem (einschliesslich Beschreibung der Bestrahlungsanlage und der Lichtenergiemessung). Biologisches Zentralblatt 92, 307336.Google Scholar
Mans, R.J. and Novelli, G.D. (1961) Measurement of the incorporation of radioactive amino acids into protein by a filter-paper disc method. Archives of biochemistry and Biophysics 94, 4853.CrossRefGoogle Scholar
Mayer, A.M. and Poljakoff-Mayber, A. (1989) The germination of seeds. Oxford, Pergamon Press.Google Scholar
O'Farrell, P.H. (1975) High resolution two dimensional electrophoresis of proteins. Journal of Biological Chemistry 250, 40074021.CrossRefGoogle ScholarPubMed
Okamuro, J.K. and Goldberg, R.B. (1989) Regulation of plant gene expression: General principles. pp 182 in Marcus, A. (Ed.) The biochemistry of plants. Academic Press.Google Scholar
Small, J.G.C. and Gutterman, Y. (1992) Effects of sodium chloride of prevention of thermodormancy, ethylene and protein synthesis and respiration in Grand Rapids lettuce seeds. Physiologia Plantarum 84, 3540.CrossRefGoogle Scholar
Tarui, Y., Masuda, N. and Minamikawa, T. (1991) RNA polymerase II activity in developing and germinating cowpea seeds. Plant Cell Physiology 32, 291294.CrossRefGoogle Scholar
Voigt, B. (1988) Proteinsynthesemuster und DNA-Synthesen (Replikation und Reparatur) bei primär dormanten, thermodormanten und nachgereiften sowie mit Hilfe von “priming”, Osmokonditionierung und Abscisinsäure gestressten Embryonen von Agrostemma githago L. Dissertation, University of Greifswald, Germany.Google Scholar
Zlatanova, J. and Ivanov, P. (1988) DNA and histone synthesis are uncoupled during germination of maize embryos. Plant Science 58, 7176.CrossRefGoogle Scholar